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B.3 Length of geodesics (Poicaré coordinates) . . . . . . . . . . . . 24

1 Introduction

The aim of this digest is to summarize in an understandable way, to the
extent that this is possible, our first conclusions stemming from literature
research on the topic of entanglement entropy and CFT. In this context
we have decided that the optimal approach is to attempt to convey the
limited knowledge we have gained in a simple and intuitive manner and risk
losing some of the mathematical rigor that is in many cases essential to
this particular subject. Of course that decision relies on the fact that this
work is intended for our fellow students and therefore it merely has to act
as a guide into the (in part) uncharted territory of our topic. Of course
all the information that we will not include explicitly can be found in the
provided references, where the interested reader will have the chance to form
a more complete picture and recover the level of detail that this work might
be lacking. Nevertheless, the calculations that are present in the following
sections have been treated with utmost care so as to be clear, detailed and
in the cases that this is feasible self-contained in order to avoid overloading
the reader with ex-machina type of justifications for the steps that we follow.
Still, this part of Physics is related to many abstract notions which are not yet
fully understood by the scientific community. Entanglement entropy itself is
one of these concepts and precisely because it is an object of active research
it is worth the time and the effort to at least understand the very basics
about it.

Both entanglement and entropy are two notions that have played an impor-
tant role in Physics since they are essential for understanding the microscopic
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details of the universe. Within the context of our topic their union in the
form of entanglement entropy has proven to be an important tool when it
comes to questions about the information contained in the systems that we
will be considering. It is undeniable that problems related to information
have dominated the last decades of research either in the form of fundamen-
tal questions, like understanding black holes and the information paradox,
or in the form of more concrete matters, for example how we can store and
handle information when it comes to quantum computing applications. En-
tanglement entropy lies in the center of many such problems and therefore it
is crucial for anyone who aspires to become involved with them to familiarize
themselves with it. Furthermore, it is present both in high and low energy
Physics and thus it can serve as a link between the two by providing either
an intuitive way of thinking or in some cases a direct passage from the one
to the other.

For all these reasons (but mainly because it’s cool) we believe that it is
indeed worth exploring this topic. Our approach will be to initially present
the basic concepts regarding entanglement entropy and subsequently discuss
its place in the CFT framework. Finally, some modern ideas about the
relation between entanglement entropy and the AdS/CFT conjecture will be
presented along with possible future developments in this field.

2 Entanglement Entropy

2.1 Key notions

Before actually treating the problem at hand it would be useful to present
some of the concepts that will be needed along the way. The first such
quantity is the density matrix which is a tool for the description of mixed
states (that is statistical ensembles over quantum states) and is defined as:

ρ =
∑
i

pi |ψi〉〈ψi| (1)

Where each ψi represents a pure state and pi the corresponding probability
associated with its appearance in the ensemble. In order to avoid any pos-
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sible confusion it should be emphasized that a mixed state, described by a
density matrix, and a superposition state of the form |ψ〉 =

∑
i ci |ψi〉 are

fundamentally different and to illustrate this, one could consider the average
value of an observable in each case. For the mixed state the average value of
the observable A is going to be:

〈A〉 =
∑
i

pi 〈ψi|A |ψi〉 (2)

Which is just the sum of the average value of A over all the states i weighed
by their respective probability. In contrast to the above, the corresponding
result for the superposition state is

〈A〉 =
∑
i

|ci|2 〈ψi|A |ψi〉+
∑
i 6=j

c∗i cj 〈ψi|A |ψj〉 (3)

The first part is the same as before since |ci|2 is just the probability pi, but the
second contains what is referred to as interference terms which come from the
non diagonal terms of the operator A. Thus, there is a manifest difference
between the cases where we consider an ensemble and a superposition of
states, which can be neatly summarized in the following statement: The
ensemble describes N copies of a quantum system, whereas a superposition
describes a single quantum system that consists of M interfering pure states.

The most important quantity that will be used throughout this digest is
the Von Neumann entropy (or simply entanglement entropy), which in the
framework of non-relativistic quantum mechanics is defined in terms of the
density matrix as:

S = Tr ρ log ρ (4)

2.1.1 Entanglement in quantum mechanics

Given two Hilbert spaces HA, HB, the most general state in their composite
system HA ⊗HB is:

|ψ〉AB =
∑
i,j

cij |Ai〉 ⊗ |Bj〉 (5)

Generally, the two subsystems are entangled, meaning that not all of the
states can be written as product states |A〉i ⊗ |B〉j or equivalently that not
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all the coefficients cij can assume the form cij = cAi c
B
j . We can associate a

density matrix to this pure state:

ρ = |ψ〉〈ψ| (6)

The density matrices satisfy the unitarity condition Tr ρ = 1, so even though
not all states can be separated one can focus on the description of one of
the two subsystems, e.g. A, by tracing over the states of subsystem B. This
procedure results in a new quantity called the reduced density matrix, which
is defined as:

ρA = TrB ρ ≡
∑
k

〈Bk|ρ|Bk〉 (7)

Creating a reduced density matrix however, requires a ”sacrifice” that might
not be apparent from the above formalization. Namely, one has to omit
any information contained in subsystem B, since tracing over its states is
equivalent to the statement that B is inaccessible; in quantum mechanical
terms this means that performing measurements in this part of the Hilbert
space is in some sense forbidden. This is (or should be) surprising for two
reasons:

• The splitting of the Hilbert space is not a physical process. In fact it
can be a completely imaginary process [3] and this provides an intu-
itive explanation as to why entanglement entropy is a good measure of
information: the larger the area of Hilbert space that cannot be probed
the more information is withheld from the observer.

• There are certain instances when a natural boundary arises that ob-
structs us from gathering information from a specific region of space-
time. A prime example is (what else?) the event horizon of black holes.
Thus, entanglement entropy qualifies as a candidate for the tools that
one might use to study these objects.

As a remark, which we will use later, it is also important to notice that
the tracing over B is equivalent (due to orthonormalization of states) to
“identifying” the B’s inside the full density matrix. If we apply this to the
original state (5), it yields:

ρA =
∑
i,j

dik |Ai〉 〈Ak| , dik =
∑
l

cilc
∗
kl (8)
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2.1.2 Entropy as a measure of entanglement

The entropy is a magnitude related to the amount of information in a system,
and therefore it is perfectly suited to study entangled states. The entropy of
one subsystem will determine its degree of entanglement with the other.

We will be using the von Neumann entropy :

SA = −TrA ρA log ρA (9)

(With the concept of the logarithm of a matrix understood as the logarithm
of its eigenvalues)

The entanglement entropy, at zero temperature, also has an important prop-
erty [2]: If B is the complement of A, then SA = SB. This will serve as a
check for our results.

If we write Tr ρnA, with n ∈ N, we know that the sum (trace) will converge,
as the eigenvalues of the density matrix λi ∈ [0, 1], and therefore

∑
i λ

n will
converge. Now, we can analytically extend n to be real, take a derivative
with respect to it (as the derivate is linear, it commutes with the trace), and
then set n = 1, and the result is (up to a sign) the von Neumann entropy:

SA = − ∂

∂n
TrA ρ

n
A

∣∣∣∣
n=1

= −TrA ρ
n
A log ρA

∣∣∣∣
n=1

= −TrA ρA log ρA

Now we want to generalize these results to the quantum field theory formal-
ism, so that we can use all the CFT tools.

2.2 QFT description and the replica trick

Our goal will be computing the previously mentioned TrA ρ
n
A. We start defin-

ing the full density matrix with the (euclidean) path integral formalism:

ρ({φx}|{φ′x′}) =
1

Z

∫
[dφ(y, τ)]

∏
x′

δ(φ(y, 0)− φ′x′)
∏
x

δ(φ(y, β)− φx)e−SE

(10)
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This definition indeed satisfies the unitarity property of the density matrix
Tr ρ = 1, which in this language is equivalent to identifying 0 with β, leading
to gluing φx to φ′x′ , thus obtaining the partition function Z as the result of
the integral, and therefore the tracing yields Z/Z = 1.

The next step is straightforward, we need the reduced density matrix, so we
trace over B. This is the point where the equivalent interpretation of this
tracing comes into play: We identify (or sew together, using terminology
from the literature) the points x that are not in A, which pictorially leads to
an image of a cylinder with open cuts at imaginary time τ = 0 (this choice
is arbitrary) for the intervals corresponding to A, at which the fields are not
identified. We have just obtained the reduced density matrix ρA.

Pictorially, we are performing the operation:

Figure 1: The leftmost picture is the representation of the density matrix.
The other two represent the tracing over B, leaving the cuts over A [1]

Now we need the trace of n of these cylinders: this is equivalent to identifying
the field in one cylinder to the field in the next one, and so on, until the last
one is glued back to the first one:

φi(x, 0
+) = φi+1(x, 0−), x ∈ A, i = 1, ..., n; i+ n ≡ i (11)

where the second argument is the τ -coordinate of the field, meaning that the
field from one cylinder is glued to the field from the next one, both at the
same τ = 0 but from a different sides.

We can understand now that TrA ρ
n
A =

Zn(A)

Zn
, where Z is the usual partition

function, and Zn is the partition function of this n-cylinder-connected surface
needed in the replica trick.
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Figure 2: Pictorial representation of the n-sheeted surface Rn of the replica
trick, for n=3 cylinders, again found in [1]

Notice that A might be a collection of intervals (as shown in Figure 1), but
in our case we will just study the 1-interval (x ∈ [u, v]) case, as it is already
challenging enough, although the extension to the N-interval case can be
found in the references provided [1, 2].

2.3 CFT approach

From now on we will be using the machinery coming from Conformal Field
Theories (in 2 dimensions, for simplicity). But first, we need to change
the problem from the complicated topology of this n-sheeted surface, to the
target space of our field theory, and in order to achieve that we need some
auxiliary fields to take account of this topology: these are the so-called twist
fields, Tn, T−n, which are inserted on each sheet (treated as a complex plane)
and substitute the conditions (11).

It can be proven [1] that this trace can be expressed as proportional to the
product of the correlation function of these fields for each sheet, namely:

TrA ρ
n
A ∝

n∏
i=1

〈T in(u)T i−n(v)〉 = 〈Tn(u)T−n(v)〉n (12)

And also, they allow us to express any expectation values on the n-cylinder
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in terms of the expectation values on the complex plane:

〈O(w)〉Rn
=
〈O(w)Tn(u)T−n(v)〉C
〈Tn(u)T−n(v)〉C

(13)

Now our only task is to compute the two point function of these twist fields.
It is clear now why we ask for the aid of CFT: computing two point functions
of primary operators is rather straightforward. In this case:

〈Tn(u)T−n(v)〉C =
1

(u− v)2∆n(ū− v̄)2∆̄n
(14)

2.3.1 Weight of the twist operators

The question that remains is: which is the weight of these twist operators? To
answer this question, we are going to use our friend, the energy-momentum
tensor T (z). First of all, the expectation value of this operator in the complex
plane C is zero 〈T (z)〉C = 0. Now we perform a conformal map from the n-
sheeted surface Rn, to the plane. As we know, the energy-momentum tensor
has the following transformation law under conformal transformations:

w → z(w) : T (w)→
(
∂z

∂w

)2

T (z) +
c

12
S[z, w] (15)

where S[z, w] is the Schwartzian derivative, defined as:

S[z, w] ≡ ∂3
wz

∂wz
− 3

2

(
∂2
wz

∂wz

)2

(16)

The mapping we are interested in is the mapping from Rn to the complex
plane, given by:

z(w) =

(
w − u
w − v

)1/n

(17)

After a tedious calculation (which can be found in B.1), the corresponding
Schwartzian derivative is:

S[z, w] =
1

2

(
1− 1

n2

)
(u− v)2

(w − u)2(w − v)2
(18)
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If we now gather this along with the vanishing expectation value of T in the
complex plane, it’s expectation value in the n-cylinder:

〈T (w)〉Rn
=

�
��

�
��

��(
∂z

∂w

)2

〈T (z)〉+
〈 c

12
S[z, w]

〉
=

c

24

(
1− 1

n2

)
(u− v)2

(w − u)2(w − v)2

(19)

For reasons that will become clear later, we will define

∆n = ∆̄n ≡
c

24

(
1− 1

n2

)
(20)

(spoiler alert: yes, the choice of ∆n is not random, these will become the
weight of the twist operators).

We are now pursuing the obtaining of the RHS of (13), as we already achieved
the LHS. For that purpose, we now introduce the Conformal Ward Identity:

〈T (z)φ1(z1)φ2(z2)〉 =
∑
j

(
∆j

(z − zj)2
+

1

z − zj
∂zj

)
〈φ1(z1)φ2(z2)〉 (21)

In our case (z1 ≡ u, z2 ≡ v,∆n = ∆−n):

〈T (w)Tn(u)T−n(v)〉C =
2∑
j=1

(
∆j

(w − zj)2
+

1

w − zj
∂zj

)
〈Tn(u)T−n(v)〉C (22)

=

(
∆n

(w − u)2
+

1

w − u
∂u +

∆−n
(w − v)2

+
1

w − v
∂v

)
〈Tn(u)T−n(v)〉C (23)

Plugging in this expression the form of the correlator (14), and after another
tedious and not insightful calculation (which can also be found in B.2), we
obtain the following result:

〈T (w)Tn(u)T−n(v)〉C =
∆n

(w − u)2(w − v)2(u− v)−2
〈Tn(u)T−n(v)〉C (24)

And with this we can now finally fulfill the promise of computing the RHS
of equation (13):

〈T (w)Tn(u)T−n(v)〉C
〈Tn(u)T−n(v)〉C

=
∆n

(w − u)2(w − v)2(u− v)−2
= 〈T (w)〉Rn

(25)
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And, as we can see, our previous identification (20) of the weight of the twist
operators is consistent with the expected result.

2.3.2 Entanglement entropy formula

Now that we have assured what we needed, we can just compute the trace
of the n-sheeted density matrix:

TrA ρ
n
A ∝ 〈Tn(u)T−n(v)〉n =

(
1

|u− v|4∆n

)n
= |u− v|−

c
6(n− 1

n) (26)

If we now define l = |u− v| (the length of the interval), and set the propor-
tionality constant to bn, we can finally achieve our goal:

SA = − ∂

∂n
TrA ρ

n
A

∣∣∣∣
n=1

= − ∂

∂n

(
bn|u− v|−

c
6(n− 1

n)
) ∣∣∣∣

n=1

(27)

= −
[
bn log(l)

c

6

(
−1− 1

n2

)
l−

c
6(n− 1

n) + a′n l
− c

6(n− 1
n)
] ∣∣∣∣

n=1

(28)

= b1
c

3
log(l)− b′1 (29)

Few technical issues to address:

• We defined the two point function of the twist fields to be normalized
(we set the constant numerator to 1), but if we want to be more precise,
we can write an arbitrary constant a (an UV cutoff) instead.

• Unitarity (Tr ρ = 1) implies that for n = 1, the proportionality constant
b1 has to be 1.

With this in mind, we now have as a final expression:

SA =
c

3
log

l

a
− b′1 (30)

This formula raises some questions, which deserve some comments:
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• The first term of the entropy has a very important and rather surpris-
ing feature: given a theory whose central charge c is known, it only
depends on the length of the interval, no other parameters of the the-
ory are involved. In other words, the operator content of the theory
is not relevant. Moreover, it is evident that for l

α
⇒ ∞ the entropy

diverges; this generally does not pose a problem since there is a pro-
cedure for renormalizing the result, it is however indicative of the fact
that the largest contribution to the entanglement entropy comes from
the degrees of freedom that are close to the boundary separating the
two subsystems. The second term on the other hand, is not as general,
but it is known for some integrable models. In our case, it is not going
to be relevant, so we are just going to drop it.

• The calculation we’ve gone through is the simplest case one can think
of, with just one interval, at zero temperature, embedded in an infinite
size 1D system A ∪ B. Nonetheless, generalizations of this result to
more complicated settings can be obtained with a bit of hard work.

In particular, we will be interested in the next section in the finite
size case. Again, CFT comes in handy as it provides a tool to easily
obtain our result: the primary transformation law. Concretely, under
a conformal map, the 2-point function of primary fields transforms as:

〈Tn(z1)T−n(z2)〉 =

(
∂w1

∂z1

)2∆n
(
∂w2

∂z2

)2∆n

〈Tn(w1)T−n(w2)〉 (31)

This allows us to easily compute the entropy for other geometries. If
we choose w → z = (L/2π) logw, then the complex plane is mapped
to a cylinder of circumference L, which is the compactification (finite
size) we were interested in, and we get the entropy formula we were
looking for:

SA =
c

3
log

(
L

πa
sin

πl

L

)
(32)

This formula has two interesting properties (that can also be seen as
consistency checks), namely: 1) In the limit l/L� 1 it reduces to the
infinite size formula (30); 2) The expression is invariant under l→ L−l,
which is the previously mentioned requirement SA = SB.
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Similar conclusions can be obtained for the non-zero temperature, bounded
systems or disjoint intervals cases, which will not be discussed here, but
can be found in [1, 2].

3 Entanglement Entropy in the AdS/CFT Frame-

work

In the previous section we have shown how one can derive a formula for the
entanglement entropy by working in the CFT framework. We will now exploit
this result, along with the holographic dictionary, in order to understand
what it implies for the dual AdS3 space [3]. The interested reader can find
more information on the matter by referring to [4].

3.1 The AdS Spacetime

Before addressing the task at hand it is required to provide some basic in-
formation on the AdS spacetime itself in order to familiarize the reader with
some of the objects that will appear later on.

An AdSd+1 space is a maximally symmetric spacetime with negative cosmo-
logical constant, that can be embedded in a d + 2 dimensional Minkowski
spacetime (X0, X1, ..., Xd, Xd+1) ∈ Rd,2 with metric η̄ = diag(−,+, ...,+,−)
[4].The form of the metric is thus:

ds2 = −(dX0)2 + (dX1)2 + ...+ (dXd)2 − (dXd+1)2 ≡ η̄µνdX
µdXν (33)

and the AdS space is given by the hypersurface:

η̄µνX
µXν = −(X0)2 +

d∑
i=1

(X i)2 − (Xd+1)2 = R2 (34)

Where R is the radius of curvature of AdS. In Poincaré coordinates, the AdS
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metric can be written as:

ds2 =
R2

z2

(
dz2 − dt2 +

d−1∑
i=1

dx2
i

)
(35)

In a different coordinate system (global coordinates) the metric for AdS takes
the form:

ds2 = R2(−cosh2 ρdt2 + dρ2 + sinh ρ2dΩ2
d) (36)

Unfortunately the only case of visualization that exists concerns AdS2, and
is given in figure 3 [4].

Figure 3: Pictorial representation of AdS2 spacetime embedded in 1+2 di-
mensional Minkowski spacetime.

Even though we are not being very thorough, it is already evident from
the figure that AdS space has rather bizarre geometrical properties that are
periodic in time. Moreover, a feature that does not stem directly from the
above, but it is worth mentioning nonetheless is the fact that light seems to be
moving with superluminal velocities since it can travel to spatial infinity and
back in a finite time interval [5]. However, despite its bizarre characteristics
and the non-trivial geometry, one has to keep in mind that AdS is a solution
to the vacuum Einstein equations and thus it requires modification in order
to include objects of interest like black holes.
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3.2 The Holographic Principle and ADS/CFT

The Holographic Principle was devised (mainly) by Gerardus ’t Hooft and
Leonard Susskind in the beginning of the 1990’s, in the context of String
Theory. It was motivated by the discovery, decades before, of the Bekenstein-
Hawking black hole entropy, which takes the form:

S =
A

4G
(37)

This is an upper bound to the entropy of a black hole, and was generalized
by Bekenstein into what is known as the “Bekenstein bound”, which states
that the maximum entropy of a given system is determined by (37).

This lead to the proposal of the Holographic Principle, which is a property
that has been conjectured to be fulfilled by any supergravity theory: all the
information in a given volume V is encoded in its boundary ∂V = A (this
is the reason why it was called “holographic”, as it resembles a hologram,
which is a 2D surface encoding 3D information).

The first concrete realization of the Holographic Principle was given by Juan
Maldacena in 1995, who proposed the well-known AdS/CFT correspondence.
This duality means that physical quantities on a curved spacetime can be
obtained through a quantum field theoretical calculation, and vice versa.
More concretely, the spacetime has to be an Anti-de Sitter spacetime, and the
quantum field theory living in its boundary has to have conformal symmetry.

This principle does not only have importance in the high energy (stringy)
physics, as an important property of this correspondence is the fact that a
strongly coupled (and therefore, hard) problem in the CFT side is weakly
coupled in the volume AdS. For this reason, condensed matter problems in-
volving strongly coupled CFT’s could be solved via General Relativity tech-
niques.

In order to achieve this equivalence, there’s what is called the “holographic
dictionary”, which allows us to translate quantities between both sides, and
from which we will use some of its “entries” in the following section.
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3.3 Holographic entanglement entropy

Let us expand on the case of the CFT2, at zero temperature with a single
interval. We have already argued that the weight (or conformal dimension)
of the twist field operators T±n is given by equation (20). We have also
shown that trA ρ

n
A is equivalent to the n products of the two point func-

tions 〈Tn(u)T−n(v)〉n which by using the AdS/CFT correspondence can be
translated as follows [3]:

〈Tn(P )T−n(Q)〉n ∼ e−
2n∆n·LPQ

R (38)

Where LPQ is the geodesic length between the points P and Q in the AdS
space and R is the radius of curvature appearing in the expression for the
metric (36).

Using the same procedure as in subsection 2.3.2, the entanglement entropy
can be computed as:

SA = − ∂

∂n
TrA ρ

n
A

∣∣∣∣
n=1

= − ∂

∂n
e−

2n∆n·LPQ
R

∣∣∣∣
n=1

(39)

= 2
∂(n∆n)

∂n

LPQ
R

e−
2n∆n·LPQ

R

∣∣∣∣
n=1

(40)

=
[ c

12
(1− n−2) +

c

6
(n−2)

] LPQ
R

∣∣∣∣
n=1

=
c

6

LPQ
R

(41)

Once again using the AdS/CFT correspondence we have for the central
charge:

c =
3R

2G
(3)
N

(42)

And thus the entanglement entropy in AdS is just:

SA =
LPQ

4G
(3)
N

(43)

This is by itself a result of great importance since it completes the establish-
ment of a relation between the microscopic CFT theory and the theory that
describes the macroscopic spacetime. Moreover, it is in many cases much
easier to compute the geodesic length of a curve rather than a correlation
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function and therefore the above formula can prove to be an important tool
when one wants to compute the entanglement entropy of a system.

An interesting question that cannot remain unanswered is whether this result
can be generalized in higher dimensions. The answer is yes, even though we
are not going to provide proof of it, the entanglement in a CFTd+1 assumes
the form [3]:

SA =
Area(γA)

4G
(d+2)
N

(44)

3.3.1 Poincaré coordinates

Finally we need to show that when translated back in CFT, equation (43)
yields the correct result derived in the previous section and given by (30).
This is fairly simple; in Poincare coordinates the length of a geodesic line is
given by (an explicit derivation can be found in appendix B.3):

Length(γ) =

∫
ds = 2R log

(
l

a

)
(45)

Therefore (43) becomes:

SA =
2R log l

α

4G
(3)
N

=
c

3
log

l

α
(46)

Where in the last step equation (42) has been used. Thus, the correct ex-
pression can be indeed recovered verifying the consistency of the conjecture
relating the two theories.

3.3.2 Global coordinates

Again, and for completeness, we can obtain the entropy formula that was
derived for the finite size system (32) via geodesic length, but for this we will
need to use global coordinates of AdS (36). The reason why we choose this
metric is that in its conformal boundary it is the same metric as the one from
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a cylinder (and thus a compactified system). We are not going to perform
the calculation here, but for the interested reader it can be found in [2]:

SA ≈
2R

4G
(3)
N

log

(
L

a
sin

πl

L

)
=
c

3
log

(
L

a
sin

πl

L

)
(47)

4 Conclusion

Motivated by the above there are several interesting remarks that can be
made regarding entanglement entropy and CFT. First and foremost we have
shown that within the CFT framework, entanglement entropy depends ex-
clusively on the subsystem length. The reason that this is so important is
because entanglement entropy measures the degree of entanglement between
two subsystems or in different words quantum correlations [6], thus provid-
ing a much “cleaner” way to get to the fundamental properties of the system
compared to most other standard quantities, including correlation functions
themselves.

Moreover, one of the features of entanglement entropy that renders it an
interesting quantity in the AdS/CFT framework is that it scales like the
area of the subsystem under consideration much like the Bekenstein-Hawking
entropy. Establishing a firm connection between the two is harder than it
seems for the reason that even though they look similar, they are not the
same. In fact entanglement entropy can be obtained as the one-loop quantum
correction to the BH entropy in the presence of matter fields [3]; this setting
is evidently more complicated than the one considered above, since it entails
significant changes in the CFT and its dual AdS space.

So far entanglement entropy has been treated in a purely theoretical frame-
work, but it has to be noted that recent developments in the field of con-
densed matter have led to its direct measurement in quantum many-body
systems [7]. That can serve to soothe our uneasiness regarding the possi-
bility that such a quantity is a purely theoretical concept (or practically a
figment of our imagination), with no hope of ever being measured and thus it
also serves as a promising start to a novel way of approaching experimentally
the problems of systems near criticality.
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Appendices

A More about entropy

One might notice that the von Neumann entropy is just the quantum equiv-
alent of the Shannon entropy [8] H =

∑
i−pi log pi. In a classical context,

entropy is closely related to the problem of arranging N particles in m states.
The latter can have in general different energies and therefore different con-
figurations of the particles will lead to a certain total system energy and
therefore the realization of a specific macrostate. Entropy is defined as the
natural logarithm of the number of different ways in which one can arrange
the particles such that they lead to the same macrostate. The number of
different configurations in the above scheme is given by:

N !

N1!N2!...Nm!
(48)

Therefore, by defining pi = Ni

N
, E/N =

∑
i−pi logEi and using the Stirling

approximation for factorials [8] it is straightforward to obtain the Shannon
entropy:

1

N
log

N !

N1!N2!...Nm!
= H +O(N−1 logN) (49)

Thus the origin of the von Neumann entropy becomes clear; the information
about the possible states, their associated energy and probability is encoded
in the density matrix operator and therefore the sum is substituted by a
trace.

Another possible and useful definition of entropy can be extracted from the
Rényi entropies of order α, defined as

Sα =
1

1− α
log Tr ραA (50)

with the advantage of avoiding the logarithm, and which is in fact equivalent
to the von Neumann case in the limit α→ 1.
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B Explicit calculations

B.1 Schwartzian derivative

The Schwartzian derivative is defined as:

S[z, w] ≡ ∂3
wz

∂wz
− 3

2

(
∂2
wz

∂wz

)2

(51)

The mapping we are interested in is the mapping from the n-sheeted cylinder
to the complex plane, given by:

z(w) =

(
w − u
w − v

)1/n

(52)

Let’s compute the first three derivatives of this function:

∂wz =
1

n

u− v
(w − v)2

(
w − u
w − v

) 1
n
−1

(53)

∂2
wz =

1

n

(
1

n
− 1

)
(u− v)2

(w − v)4

(
w − u
w − v

) 1
n
−2

− 2

n

u− v
(w − v)3

(
w − u
w − v

) 1
n
−1

(54)

∂3
wz =

1

n

(
1

n
− 1

)(
1

n
− 2

)
(u− v)3

(w − v)6

(
w − u
w − v

) 1
n
−3

(55)

+
−6

n

(
1

n
− 1

)
(u− v)2

(w − v)5

(
w − u
w − v

) 1
n
−2

(56)

+
6

n

u− v
(w − v)4

(
w − u
w − v

) 1
n
−1

(57)
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Now, the two different terms of the Schwartzian derivative:

∂3
wz

∂wz
=

(
1

n
− 1

)(
1

n
− 2

)
(u− v)2

(w − v)2(w − u)2
(58)

+ (−6)

(
1

n
− 1

)
u− v

(w − v)2(w − u)
+

6

(w − v)2
(59)

∂2
wz

∂wz
=

(
1

n
− 1

)
u− v

(w − v)(w − u)
− 2

w − v
(60)

We need the square of this second term:(
∂2
wz

∂wz

)2

=

(
1

n
− 1

)2
(u− v)2

(w − v)2(w − u)2
+

4

(w − v)2
(61)

+ (−4)

(
1

n
− 1

)
u− v

(w − v)2(w − u)
(62)

We can finally write the Schwartzian:

S[z, w] =

(
1

n
− 1

)(
1

n
− 2

)
(u− v)2

(w − v)2(w − u)2
(63)

+
((((

((((
(((

((((
((

(−6)

(
1

n
− 1

)
u− v

(w − v)2(w − u)
+
��

��
�6

(w − v)2
(64)

− 3

2

(
1

n
− 1

)2
(u− v)2

(w − v)2(w − u)2
−
��

�
��
�3

2

4

(w − v)2
(65)

+
((((

((((
(((

((((
(3

2
4

(
1

n
− 1

)
u− v

(w − v)2(w − u)
(66)

(67)

Rearranging the non-vanishing terms:

S[z, w] =

[(
1

n
− 1

)(
1

n
− 2

)
− 3

2

(
1

n
− 1

)2
]

(u− v)2

(w − v)2(w − u)2
(68)

=
1

2

(
1− 1

n2

)
(u− v)2

(w − v)2(w − u)2
(69)

And we have therefore finished our task.
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B.2 Conformal Ward Identity

〈T (w)Tn(u)T−n(v)〉C =
2∑
j=1

(
∆j

(w − zj)2
+

1

w − zj
∂zj

)
〈Tn(u)T−n(v)〉 (70)

=

(
∆n

(w − u)2
+

1

w − u
∂u +

∆−n
(w − v)2

+
1

w − v
∂v

)
〈Tn(u)T−n(v)〉 (71)

Plugging in this expression the form of the correlator

〈Tn(u)T−n(v)〉C =
1

(u− v)2∆n(ū− v̄)2∆̄n
(72)

and remembering that ∆n = ∆−n, we obtain the following:

〈T (w)Tn(u)T−n(v)〉C = (73)

=

(
∆n

(w − u)2
+

−2∆n

(w − u)(u− v)
+

∆n

(w − v)2
+

2∆n

(w − v)(u− v)

)
〈Tn(u)T−n(v)〉C

(74)

If we already define 〈T (w)〉Rn
≡ 〈T (w)Tn(u)T−n(v)〉C/〈Tn(u)T−n(v)〉C, oper-

ating with the previous expression leads to:

1

∆n

〈T (w)〉Rn
=

1

(w − u)2
+

−2

(w − u)(u− v)
+

1

(w − v)2
+

2

(w − v)(u− v)
(75)

=
(w − v)2 + (w − u)2

(w − u)2(w − v)2
+ 2

(w − u)− (w − v)

(w − u)(w − v)(u− v)
(76)

=
(w − v)2 + (w − u)2 − 2(w − u)(w − v)

(w − u)2(w − v)2
(77)

=
[(w − v)− (w − u)]2

(w − u)2(w − v)2
=

(u− v)2

(w − u)2(w − v)2
(78)

Summarizing, we found the following result:

〈T (w)Tn(u)T−n(v)〉C
〈Tn(u)T−n(v)〉C

= ∆n
(u− v)2

(w − u)2(w − v)2
(79)
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B.3 Length of geodesics (Poicaré coordinates)

In Poincaré coordinates (35) with t fixed, the geodesics are parametrized by:

(x, z) =
l

2
(cosλ, sinλ), (ε < λ < π − ε) (80)

where we have already introduced the cutoff ε� 1, needed to regularize the
metric (and therefore the quantities associated to it). We can obtain the line
element ds2 of the geodesic with this as:

ds2 =
R2

z2
(dz2 + dx2), (dx, dz) =

l

2
(− sinλ dλ, cosλ dλ) (81)

Substituting both differentials:

ds2 =
R2

sin2 λ
(cos2 λ+ sin2 λ)dλ =

R2

sin2 λ
dλ (82)

We can integrate now this, taking the cutoff into account:∫
ds = R

∫ π−ε

ε

dλ

sinλ
= 2R

∫ π/2

ε

dλ

sinλ
(83)

= −2R log [cotλ+ cscλ]
∣∣π/2
ε

(84)

= −2R [log(1)− log(cot ε+ csc ε)] (85)

= 2R log

(
1

ε
+

1

ε
+O(ε2)

)
≈ 2R log

(
2

ε

)
(86)

The cutoff in the boundary can be expressed as ε = 2a/l, then:

Length(γ) =

∫
ds = 2R log

(
l

a

)
(87)
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