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Abstract

This digest is intended to provide an overview of the developments in physics surrounding
the Kondo problem. We briefly discuss the history of the Kondo problem. Then we describe
some early models of magnetic impurities, after which we briefly discuss Kondo’s solution to
the resistance minimum and the Kondo problem which arises from this solution. After this, we
follow in the footsteps of those who attempted to solve the Kondo problem by various means.
First, we review Kenneth Wilson’s 1975 approach through the method of the renormaliza-
tion group. Then the exact solutions are found through the method of the Bethe Ansatz as
described by Andrei and Wiegmann in 1980. Finally, we discuss the influence of the Kondo
problem on further advances in physics.
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1 Introduction
The development of the Kondo problem provides an interesting insight into the interplay between
theoretical and experimental condensed matter physics over the course of about fifty years. The
seemingly simple theoretical problem has puzzled many theoreticians over the years and has had
many attempts from different technical angles fired at it. Finally being solved from a side of physics
quite unexpected, it proved to lay the foundation of a new era of theoretical condensed matter
physics. The Kondo problem is also a striking example of how different approaches to the same
problem can be equally valuable, shedding light on different parts of it, but that there is not one
approach that describes all the aspects of the problem.

Anomalous behaviour was first observed by experimentalists at the beginning of the thirties, who
were measuring the resistance of metals at low temperatures. Instead of monotonically decreasing
with temperature, as one would expect due to the phonon contribution to the resistance decreasing
with temperature, a finite resistance minimum was found as T → 0. It was later found that this
behaviour was due to magnetic impurities in the non-magnetic bulk metal, which affect the conduc-
tion electrons, resulting in a change in resistivity. At first, the way in which magnetic impurities
influence resistance minima was entirely obscure [1]. Since this was found to be the cause of the
resistance minimum, many models of magnetic impurities have been set up to attempt to describe
the experimentally observed quantities theoretically. This proved to be a task more daunting than
it first appeared. It was Jun Kondo who, in his 1964 paper on resistance minima in the s-d exchange
model (to be described in section 2.3), was able to model the impurities successfully, retrieving the
behaviour as observed in experiments [2].

Kondo’s findings, however, caused new theoretical problems for our understanding of magnetic
impurities. In his perturbational calculations, he retrieved a lnT contribution to the resistivity,
which solves the initial problem of the observed resistance minimum, but poses new questions as
to how to describe the theory as T → 0, since the lnT diverges in this region. Thus spawned the
search for a theory to describe the low temperature behaviour of systems with resistance minima.
This search is called the Kondo problem and attracted the attention of many theoreticians over
the course of ten years, finally being concluded by the groundbreaking work by Kenneth Wilson [3].

Wilson’s landmark 1975 research article approaches the problem from a completely new angle, not
previously attempted in this field of condensed matter physics. He constructed a non-perturbative
method, involving renormalization group transformations from field theory and scaling ideas from
condensed matter physics. This not only described the Kondo problem correctly in the low energy
regime and obtained results for the ground state, but also provided a new powerful tool to be ap-
plied to other problems. Though this numerical renormalization method described the behaviour
of the model very effectively, it proved difficult to obtain exact results for states other than the
ground state, as this required great computing resources, especially at the time.

The exact solutions to the s-d exchange model were discovered by Andrei and Wiegmann in 1981,
using the Bethe ansatz [4]. They retrieved analytical results which described the system over the
full temperature range. Their work confirmed Wilson’s ideas, which positively determined his
method as a new tool to be applied to other physical problems.

The course of this digest will follow the chronological outline described above. First we will do a
quick and dirty description of various models of magnetic impurities created over the years before
Kondo. We will briefly show their shortcomings by calculating the resistance minima, thereby
observing predicitons which don’t match experiment. After this we will have a run through of
Kondo’s perturbative approach, resulting in the lnT problem named after him. The bulk of this
digest will be the following in the footsteps of Wilson’s renormalization group calculation and An-
drei and Wiegmann’s Bethe ansatz solution, respectively. Finally, we will comment on the impact
the developments in the Kondo problem had on modern theoretical physics.
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2 Models of magnetic impurities
When we make a first attempt at the problem of magnetic impurities, we formulate a general
Hamiltonian from first principles and try to account for the low temperature behaviour. This
Hamiltonian has the form,

H =

N0∑
i=0

(
pi

2

2m
+ U (ri) + Vimp (ri)

)
+

1

2

N0∑
i 6=j

e2

|ri − rj|
+

N0∑
i=1

λ (ri) li · σi, (1)

for N0 electrons. The Hamiltonian in (1) possesses all kinetic and potential terms that you would
expect. Including an electron-electron interaction term but the Coulomb term makes it impossible
to do perturbative calculations. To deal with this Coulomb term we need the framework of model
Hamiltonians, where you start off with an approximated Hamiltonian, where for example the lattice
is used as input for the model. In the case of impurities we assume we’re dealing with simple metals
with broad conductions bands and, for now, we assume a non-interacting system of electrons. By
doing so the Hamiltonian reduces to the form

H =
∑
k,σ

εkc
†
k,σck,σ, (2)

where the creation and annihilation operators, c† and c obey standard commutation relations for
fermions. Before we can start thermodynamical calculations we need a density of states so that
we can construct a partition function. To keep things simple we assume a basic density of states
with the form,

ρ0 (ε) =
∑
k

δ (ε− εk) . (3)

With these two basic ingredients it is straightforward to calculate the partition function Z0,

Z0 = Tre−β(H−µN) =
∏
k

(
1 + eβ(εk−µ)

)2

. (4)

Were the power of 2 is due to spin degeneracy. With this partition function we can perform
thermodynamical calculations. To start off, we investigate the specific heat C (T ) by using the
Fermi-Dirac distribution function and performing a Sommerfeld expansion. This gives,

C (T ) = γT

(
1− π2

30
(kBT )

2

((
ρ′0
ρ0

)2

−
(
ρ′′0
ρ0

)))
ε=εk

+O
(
T 5
)

where γ =
2π2k2

B

3
ρ0 (εF ) .

(5)
Secondly, for magnetic properties we couple the system to a magnetic field and by doing so the
energy becomes spin dependent. This makes it possible to calculate the zero field paramagnetic
susceptibility χ (T ),

χ (T ) = χ (0)

(
1− π2

6
(kbT )

2

((
ρ′0
ρ0

)2

−
(
ρ′′0
ρ0

)))
ε=ε

+O
(
T 4
)

where χ (0) = 2µ2
Bρ0 (εF ) .

(6)

2.1 Potential scattering and Friedel sum rule
In the previous section we introduced a basic Hamiltonian, but that did not describe the physics
of impurities in host metals. To improve on this we can introduce a potential term caused by the
impurity. Because the impurity has a different electron configuration than the atoms of the host
metal the potential term will be a Coulomb term. However the conduction electrons from the host
metal will screen the charge of the impurity, so that it will not generate a macroscopic electrical
field. By adding this effective potential term Veff (r) to the Hamiltonian in (1) it changes to the
form,

H =
∑
k,σ

εkc
†
k,σck,σ +

∑
k,k′,σ

Vk,k′c
†
k,σck′,σ. (7)
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The thermodynamical properties of the new system are found by introducing a new basis α. This
basis changes the Hamiltonian to the form,

H =
∑
α,σ

εαc
†
α,σcα,σ, (8)

and is again diagonalizable. The only thing that the introduced potential does is shift the energy
levels of the Hamiltonian in (1). The shift in energy levels does not change the calculations
performed in the previous section so it only changes ρ0 (ε) → ρ (ε) in equations (5) and (6).
The potential term did not account for interesting physical behaviour so far mainly because the
impurity has a insignificant impact on the density of states. To see when it does, we need a different
representation of the density of states, that is, one that allow perturbative calculations. This is
possible with the machinery of Green’s functions in the following form,

ρ (ε) = ∓ 1

π
ImTrG± (ε) , (9)

where G+ is the retarded Green’s function and G− is the Advanced Green’s function. Before we
can start perturbative calculations on the density equation in (9) we need to introduce a resolvent
Green’s function that satisfies

(ε± is−H)G± (ε) = I. (10)

. The resolvent Green’s function together with the Hamiltonian in the form H = H0 + V allows
us to find an expression for the full Green’s function G±,

G± = G±0 +G±0 V G
±. (11)

By iterating this process we find a power series in V of the form,

G+ = G+
0 +G+

0 T
(
ε+
)
G+

0 , (12)

where the T matrix is given by

T
(
ε+
)

= V + V G+
0 V + V G+

0 V G
+
0 + . . . = V

(
I −G+

0 V
)−1

, (13)

and we only regarded the retarded Green’s function. The equation for the advanced Green’s
functions is found by changing is→ −is in 10. This machinery can be used to find an expression
for the difference in the density of states 4ρ (ε) = ρ (ε)− ρ0 (ε) by using (9)

4ρ (ε) = − 1

π
ImTr

(
G+ (ε)−G+

) (ε)
)
. (14)

This expression can be rewritten, by using some identities from linear algebra, to a form

4ρ (ε) =
1

π
Im

∂

∂ε
ln
(
detT

(
ε+
))
. (15)

So the impurity creates an effective local potential where electrons from the host metal can scatter.
The scattering process causes a phase shift in the electron wave functions as a result of a change
in energy. If we integrate the difference in the density of states up to the Fermi level we find the
expression

nimp =
η (εF )

π
(16)

This relationship is called the Friedel Sum Rule and relates the valence differences and the phase
shift. By introducing an impurity that has more valence electrons than the host material, every
states that moves under the Fermi level picks up a phase difference of π.

When the effective potential is sufficiently large it can induce a bound state below the conduction
band. Think of it as an attractive potential that localises the electrons of the host material for
a period of time in the vicinity of the impurity. This generates a narrow peak in the conduction
band and is called virtual bound state resonance. It is virtual because far from the impurity the
wave function becomes a Bloch state. For a long time they thought virtual bound states explained
the effects of impurities in metals.

3



2.2 From the Anderson model to the s-d exchange model
In the previous section we talked about virtual bound state resonance and this is the starting point
for this section. Philip Warren Anderson looked at materials where the d- or f -levels lie in the
conduction band. For these states there is an effective potential term due to angular momentum
and localises the higher angular momentum states in such a way that an impurity ion resembles
atomic d- or f -states. It is possible for electrons to tunnel through this barrier and create a virtual
bound state. These states overlap with the Bloch states of the material and generate the following
Hamiltonian,

H =
∑
σ

εdc
†
d,σcd,σ +

∑
k,σ

εkc
†
k,σck,σ + Und,↑nd,↓ +

∑
k,σ

(
Vkc
†
d,σck,σ + V ∗k c

†
k,σcd,σ

)
. (17)

For U = 0 the system is solvable, produces virtual bound state resonance and can account for the
Friedel sum rule, but does not explain the resistance minimum. So far we considered models with a
single impurity. But to have an impurity contribution we need a finite concentration cimp =

Nimp
Ns

which is small enough so that we can neglect the interactions between the impurities. When this
is the case, the leading term in the specific heat and paramagnetic susceptibility are

Cimp =
2π2

3
k2
bTcimp4ρ (εF ) and χimp = 2µ2

Bcimp4ρ (ε) . (18)

When we look at the susceptibility we see that the leading term is independent of the temperature
and the following term is of the order T 2. Estimations of the parameters of the one-body formalism
are so high that it is unlikely that they produce the explanation for the problem.

2.3 The s-d Exchange model
In the limiting case of the Anderson problem where U → ∞ we obtain the s-d exchange model
with the form

Hsd =
∑
k,k′

Jk,k′
(
S+c†k,↓ck′,↑ + S−c†k,↑ck′,↓ + Sz

(
c†k,↑ck′,↑ − c

†
k,↓ck′,↓

))
. (19)

In this model it is assumed that the resistance effect can be explained by an interaction term
Jk,k′ that represents an interaction between the local magnetic moment from the impurity and
the conduction electrons. By preforming perturbative calculation in Jk,k′ up to second order, and
assuming that 19 is a perturbation on the full Hamiltonian 19 + 7, will result in the same behaviour
as found for potential scattering.

3 The resistance minimum
Thus far we only used models that contain a single impurity and also pointed out that it is not
likely that these can explain the resistance minimum. To generalize the Hamiltonian in (7) we take

H =
∑
k,σ

εkc
†
k,σcK,σ +

∑
K,q,σ

∑
Ri

eiq·RiVqc
†
k+q,σck,σ. (20)

In theory this model can work but in reality we do not know the impurity distribution. To deal
with this problem, we average over random configurations by using dynamical mean field theory.
This is a local theory and describes time dependent interactions but also generates a ’self-energy’
term Σ (k, ε+) = cimp〈k | T (ε+) | k〉 . The self-energy term can be related to the cross-section
by using the optical theorem of scattering theory, and after doing dimensional analysis we get an
expression for the mean free path

ImΣ
(
k, ε+k

)
= − ~

2τ (k)
. (21)

From this expression we could use the Drude theory of electron conduction to find a form for the
conductivity,

σ =
ne2τtr
m

, (22)
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where n is the number of conduction electrons per unit volume. But this form does not generate
the correct results. To show this we use the Boltzmann theory to find a distribution function in
the presence of a static field E. When going through the calculation and restricting ourselves to
potential scattering we end up with an expression for the resistivity Rimp due to the impurities of
the form

Rimp =
3πcimpmV

2

2e2~εF
. (23)

But this term is temperature independent. Even if we look at corrections and combine it with
phonon scattering it does not explain the resistance minimum.

The calculations in the s-d exchange model are different because you have to consider the de-
gree of freedom in spin explicitly. When doing so, up to second order one ends up essentially with
the same results as for potential scattering.

3.1 Kondo’s solution and problem
In the year 1964 the field of magnetic impurities got an impulse thanks to Japanese physicist Jun
Kondo [2]. At the ninth conference on magnetism and magnetic materials he saw the experimental
data of [5] on resistivity minimum measurements on dilute alloys of Fe with different concentra-
tions. He used two findings within this date to deduce a term that accounts for the resistance
minimum. Firstly, the minimal temperature is proportional to c

1
3 , where c is the concentration

of the impurity atoms. Even at low concentrations the minimal temperature is remarkably high.
This would suggest that the local spins are not correlated in the neighbourhood of Tmin. Secondly
the difference between the absolute resistivity and the resistivity at Tmin is proportional to the
concentration but ρTmin is also proportional to the concentration which means that the relative
depth of the minimum is independent of the concentration. These two observations suggest that
we need a model where the contribution is generated by addition of spin (a paramagnetic effect).
Taking all this in consideration, Kondo concluded that the result must be deduced from the s-d
exchange model where localised spins are not correlated. Thus far, calculations on the s-d exchange
model did not give any interesting results for the problem at hand. But this was because only
expansions up to second order in Jk,k′ were done. Kondo performed perturbative calculations
up to third term, by not only taking the commutation relations between creation an annihilation
operators into account, but also those for spin raising an lowering operators. To do so we need the
T matrix up to second order,

〈k′, σ′ | T
(
ε+
)
| k, σ〉(2) = 〈k′, σ′ | HsdG

+
0 (ε)Hsd | k, σ〉, (24)

which generates a lot of terms, but the most important ones are the ones with spin exchange. One
contribution is

J2

N2
s

∑
k1,k2,k′1,k

′
2

〈k′, ↑|S−c†k1,↑ck′1↓ (ε+ is−H0)
−1
S+c†k2,↑ck′2 |k, ↑〉 . (25)

This term contributes for k1 = k′, k′1 = k2, k′2 = k, and gives

J2

N2
e

∑
k2

S−S+ (1− f (εk2))

(ε+ is− ε (k2))
, (26)

where f (εk) is a the Fermi factor. When we switch the spins in the creation an annihilation
operators, perform the same calculation and add the two terms together we get

S2
z

J2

N2
e

∑
k2

1

(ε+ is− ε (k2))
. (27)

After collecting the first and second order terms together we find

〈k′, ↑|T (ε+) |k, ↑〉 = sz
J

Ns
(1− 2Jg (ε)) where g (ε) =

1

Ns

∑
k

f (εk)

εk − ε− is
. (28)
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In a similar way, terms arise from 〈k′, ↓|T (ε+) |k, ↓〉, 〈k′, ↑|T (ε+) |k, ↓〉 and 〈k′, ↓|T (ε+) |k, ↑〉.
After collecting all the terms and using the Boltzmann theory we find the expression

1

τ (k)
=

3ncimpJ
2S (S + 1)

2e2~εF
(1− 2J (g (εk) + g ∗ (εk))) . (29)

The only thing that remains is preforming de complex integral over g (ε). The final result is

Rspinimp =
3πmJ2S (S + 1)

2e2~εF

(
1− 4Jρ0 (εF ) ln

(
kBT

D

))
, (30)

and the total resistivity term has the form,

R (T ) = aT 5 + cimpR0 − cimpR1ln

(
kB

T

D

)
, (31)

where the phonon contribution is also considered. By looking at the expression Tmin we find the
same behaviour that Kondo saw in the data, namely,

Tmin =

(
R1

5a

) 1
5

c
1
5
imp (32)

So far kondo explained the resistance minimum but a new problem arose. When we look at the
last term in the resistivity in (31) there is ln (T ) contribution. This term is problematic in in the
limit T → 0 because it diverges. Describing the behaviour in low temperature regime is called the
Kondo problem

4 From Kondo to Wilson
As we have seen in the previous section, Kondo’s third order perturbation solution to the s-d ex-
change model in the coupling parameter J gives rise to a lnT term, which succesfully describes the
resistance minimum. However, we can also evidently see where this solution breaks down, as this
term diverges as T → 0. The search for a theory which correctly describes the low temperature
regime of the system is known as the Kondo problem. Different approaches involving perturbation
methods have been attempted, but all had their respective failures. It became clear that the aim
was to find non-perturbative techniques for calculating quantities such as the magnetic suscepti-
bility and the specific heat as T → 0 for the s-d exchange model.

The most important of these for our discussion was the development of ideas by Anderson, Yuval
and Hamann [6]. They modeled the spin-flips due to the local moment as charged particles, effec-
tively turning the problem into a classical one. This made it possible to incorporate scaling and
renormalization ideas involving the conduction electron band width D. By doing so, Anderson
showed that the energy of the conduction band width can be reduced from the order of electron
volts down to thermal energy scales. In the ferromagnetic case, the perturbative scaling for T = 0
can be continued down to D → 0, resulting in a renormalised coupling J → 0, and as such the
impurity spin is uncoupled. Therefore, the ferromagnetic case is essentially solved. For the phys-
ically more interesting antiferromagnetic model, however, the conduction band width can only
be reduced to the order of kBT , after which the perturbative approach breaks down. Thus the
antiferromagnetic case still remains unsolved and there still remains the challenge of continuing
the scaling beyond the perturbative regime to create a model that could describe the lowest lying
excitations, and hence the thermodynamic behaviour as T → 0.

We realise that the above discussion is very hand-wavy and far from explanatory, but it should
only serve as a conceptual bridge from the methods considered in Kondo’s time to those proposed
by Wilson, to be discussed in the next section. Anderson’s incorporation of scaling and renormal-
ization ideas paved the way for Wilson’s successful, inventive approach to the Kondo problem.

5 The renormalization group approach
Wilson’s successful line of attack to the Kondo problem was through the renormalization group
approach. It required a conceptual leap which resulted in a powerful tool that could be applied to

6



other open problems in physics. Indeed, he did win the 1982 Nobel prise in physics for his work to
be discussed below. The renormalization group approach was known to work for field theoretical
problems and those systems which exhibit critical phenomena for phase transitions. After Wilson,
though, it could also be applied to problems of the likes of the Kondo problem.

In this section, first of all, the conceptual foundation underlying the renormalization group ap-
proach will be discussed. After this, renormalization group transformations and renormalization
group flows will be considered in a general nature. Then we will reformulate the Kondo Hamil-
tonian in a way fit for these renormalization group transformations, after which we will perform
them. The last part of this section shows how Wilson went about calculating thermodynamical
quantities for the system of magnetic impurities in the low temperature regime from the results
obtained by performing the iterative renormalization group calculations. This section follows in
the footsteps of Wilson’s 1975 paper [3] and in parts uses the pedagogical approaches of [7] and
[8].

5.1 The conceptual framework of ’the renormalization group’
As many names for phenomena in modern theoretical physics, the renormalization group, too, is
an unfortunate one. As John Cardy explains eloquently in his book [8], all three the words have
their respective failures. As is often the case, they are remnants of historical and by now certainly
outdated terminology. The doctrine of the 60’s had been that our world could be understood in
terms of symmetries and their implementations on groups, rather than dynamics. The transfor-
mations actually have the mathematical structure of a semi-group, as the transformation cannot
be inverted. Perhaps the most interesting misnomer is the definite article ’the’. It suggests the
existence of a certain machine into which one can put some problem and the answers come rolling
out. This is not the case with these methods, as they rely more on a framework of ideas that is to
be adapted to any specific problem at hand. In this subsection, we will try to briefly lay a founda-
tion for the concepts underlying the renormalization group, before we show how transformations
are applied and understood in the next.

The area of physics to which renormalization group methods provide paths to solutions is that
of problems which don’t have a characteristic parameter scale. For instance, in field theory, one
considers all available virtual momenta when describing interactions. Or in critical phenomena,
all the fluctuations from the scale of atomic spacing up to the correlation length are equally im-
portant. When using techniques which don’t involve renormalization group methods, it is in such
situations that, when one wants to calculate certain physical quantities, one inevitably encounters
divergences. The problem is that, though each order of magnitude range of parameters contributes
a finite amount, the sum of these is infinite, because we consider an infinite amount of orders.

Basically, what the renormalization group approach aims to do is to divide the full range of pa-
rameter scales into smaller ones, which are each manageable in their sise, to subsequently consider
each subrange in sequence. Each subrange is then influenced by the previous and influences the
next. Each one of such steps comes from a renormalization group transformation and at the end
of each of the steps, one is left with a new effective Hamiltonian, which describes all the following
subranges not yet solved. These steps keep reparameterising the Hamiltonian, though all the while,
they still have the same form as the original Hamiltonian and the physics of the full system re-
mains unchanged. Because the current discussion inevitably ends up too qualitative and abstract,
we shall now consider these general renormalization group transformations and their behaviour in
a general context.

5.2 General renormalization group transformations and renormalization
group flows

Consider a general, unspecified HamiltonianH with a set of interaction parameters K = {K1,K2, ...}.
The renormalization group transformation is a mapping T from the original Hamiltonian H(K)
to a new, effective, renormalised Hamiltonian H ′(K′) of the same form, specified by a new set of
interaction parameters K′ = {K ′1,K ′2, ...},

T [H(K)] = H ′(K′). (33)
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These transformations are generally non-linear. This new Hamiltonian is valid over a reduced
scale of the original interaction parameters, having essentially removed some of the old parameter
scales. In order to have the resulting Hamiltonian look like the original one, we must rescale the
parameters by a coefficient, let’s call it ζ, which specifies the ratio of the new parameter scale to the
old one. In particular, after each transformation, the partition function of the system must remain
the same. One can perform the above transformation in sequence, resulting in a new effective
Hamiltonian at each step.

Now consider the parameter space of the original set K. The Hamiltonian is at some point H(K).
As we perform subsequent renormalization group transformations, the new effective Hamiltonian
will start to move in this parameter space. And once we let ζ be a continuous variable, this move-
ment will describe a trajectory. In fact, the purpose of changing the variables by rescaling, was
to allow the existence of fixed points in the parameter space. A fixed point is a point K∗ in the
parameter space which is invariant under the transformation,

T [H(K∗)] = H(K∗), (34)

which we will henceforth abbreviate by

T [K∗] = K∗. (35)

The trajectories obtained by subsequent renormalization group transformations either move to-
wards or away from these fixed points. The behaviour of the trajectories near the fixed points can
be analysed by linearising the renormalization group transformation near the fixed point. We will
now consider such a linearisation process.

We assume differentiability of the renormalization group transformation near the fixed point. In the
neighbourhood of a fixed point, we can write K = K∗+ δK. After performing the renormalization
group transformation and expanding in powers of δK, we have

T [K∗ + δK] = K∗ + L∗ζδK +O
(
δK2

)
, (36)

where L∗ζ is a linear transformation. Now we assume the linear transformation to have a complete
basis of eigenvalues and eigenvectors, λ∗n(ζ) and O∗n(ζ), respectively. We can then use them as a
basis for δK,

δK =
∑
n

δKnO∗n(ζ). (37)

Now that we have linearised the renormalization group transformation, we can get a feeling for
how successive applications of the transformation affect a point near a fixed point in parameter
space. Say we act l times with T , we then get

T l[K∗ + δK] = K∗ +
∑
n

δKnλ
∗ l
n O∗n(ζ). (38)

As we can see, the direction of the trajectory near a fixed point depends on the value of λ∗n. If
the eigenvalues of the linearised equations are λ∗n > 1, the terms are called relevant and if there
are one or more such terms around a fixed point, we call it an unstable fixed point, as points in
parameter space are pushed away from it. For eigenvalues λ∗n < 1, we see that the components
of δK decrease with l. These terms are called irrelevant and if a fixed point has only irrelevant
eigenvalues, we call it a stable fixed point, as all nearby points in parameter space are drawn
toward it. Eigenvalues λ∗n = 1 are called marginal. Fixed points are only called marginal if there
are no relevant eigenvalues and at least one marginal one. In this case, we cannot tell from the
linearised equations whether the nearby point will move toward the fixed point of away from it,
and the behaviour can often be deduced by performing perturbative methods on the problem at
hand.

The picture of all these possible trajectories and all the various fixed points together in the param-
eter space is what is called the renormalization group flow. In particular, regions between unstable
and stable fixed points are interesting, as they describe how points in between flow from the one
to the other. This is called the cross-over region.

8



5.3 Redefining the Kondo problem
Before we can apply the methods of the renormalization group approach to the Kondo problem, we
need to cast the Kondo Hamiltonian in a new form. The Kondo problem describes a spin- 1

2 impu-
rity coupled to the conduction band of a non-magnetic metal. Contrary to primary intuition, the
Kondo problem’s difficulties lie more in subtleties involving the conduction band, rather than the
magnetic impurity. The effect of the impurity on the conduction band is quite simple. Instead of
being able to treat the conduction band electrons as independent entities, they must be considered
as a many-electron system. This is due to the fact that the magnetic impurity causes spin-flips,
and these spin-flips cause the electrons to no longer be independent from one another. Imagine two
spin-up electrons flying towards the spin-down impurity. The first electron to hit the impurity will
exchange spin with it, but the second can no longer spin-flip scatter with the impurity since they
are now both spin-up. Thus, the impurity is coupled to the entire bath of electrons, and we must
modify the Hamiltonian in such a way that this coupled nature can be represented in a manner fit
for the iterative renormalization group approach.

The Kondo Hamiltonian, as given by the man himself in 1969 [9], reads, in dimensionless form

HK =

∫ 1

−1

dka+
k ak − JA

+σA · τ , (39)

where

A =

∫ 1

−1

dkak, {ak, a+
k′} = δ (k − k′) . (40)

The ak is the annihilation operator for a conduction band electron with momentum k relative to
the Fermi momentum kF , where the spin index is omitted. Integration runs from −1 to 1, because
k is measured in units of the band edge momentum, and the energy is rescaled such that there is no
constant factor. A is an operator that annihilates electrons in the vicinity of the impurity. It has a
spin index, and σ is the corresponding Pauli matrix. τ are the Pauli matrices for the impurity spin.

It takes three steps to cast the Hamiltonian into an approximate form, such that Wilson’s iterative
renormalization group approach can be used. The first step is to discretise the operators ak, by
turning the continuum −1 < k < 1 into a discrete set. The discrete values are ±1,±Λ−1,±Λ−2, ...,
where Λ is an arbitrary parameter > 1. Wilson’s calculations were done for Λ = 2, 2.5 and 3,
and the calculations for these values matched within 3% of experiment. The discretisation is done
logarithmically, and the motivation for this is that each order of magnitude range of momentum k
contributes equally to the logarithmic divergence found in Kondo’s perturbative solution. This is
exactly what is needed for a renormalization group approach to work, since we have equal contri-
bution of all energy scales. This step contains Wilson’s fundamental approximation. He generates
a complete set of orthogonal electron creation and annihilation operators in each sub-interval by
setting up a Fourier transform and subsequently neglects all but the first of these operators. The
rejected states are not directly coupled to the impurity and the indirect coupling to the first states
becomes small in the continuum limit. For a more thorough explanation of this approximation,
the reader is referred to [3].

The Hamiltonian is now

Ha =

∞∑
n=0

Λ−n
(
a+
n an − b+n bn

)
− JA+σA · τ , (41)

where

A =

∞∑
n=0

Λ−
n
2 (an + bn) . (42)

The an and bn correspond to momenta k = Λ−n and k = −Λ−n, respectively.

The second step converts this Hamiltonian into a new orthogonal basis,

Ha =

∞∑
n=0

Λ−
n
2 εn

(
f+
n fn+1 + f+

n+1fn
)
− J̃f+

0 σf0 · τ , (43)

9



where the zero mode of fn is chosen so as to correspond to A and is normalised to {f0, f
+
0 } = 1.

The third step is to redefine εn = [
(
1 + Λ−1

)
/2−

n
2 ] for all n and divide the Hamiltonian by(

1 + Λ−1
)
/2Λ−

n
2 . The J̃ is then related to J by J̃ = 4J

(
1 + λ−1

)−1 and the resulting hopping
Hamiltonian is

H =

∞∑
n=0

Λ−
n
2

(
f+
n fn+1 + f+

n+1fn
)
− J̃f+

0 σf0 · τ . (44)

This Hamiltonian now represents a semi-infinite linear chain of electrons, able to hop from site
to site. The magnetic impurity is at the zeroth position open end of the chain. Each step along
the chain represents an exponentially decreasing energy scale for the conduction band electrons.
The justification for the redefinition of εn is as follows. The problem to be analysed is that of
the low-temperature regime of the magnetic impurity system. As we go along the chain, the con-
duction band energy decreases, corresponding to states nearer to the Fermi surface, which are the
only ones that matter in the low temperature regime. In doing so, we increase n and as such, the

original εn =
(1+Λ−1)

2 Λ−
n
2 limits to 1 anyway.

What is the physical picture that emerges from these transformations? We see that the impu-
rity is coupled directly to a local orbital, which itself is coupled to the next, slightly more removed
one, and so forth. There is a picture of shells of coupled electron orbitals on top of each other,
much like the layers of an onion. As we go to the more distant shells, or equivalently, as we move
to lower energy scales, they are built up of states near the Fermi level. These states are important
in calculations of thermodynamical quantities near zero temperature, as this limit can only excite
low energy conduction states.

We now have the set up to perform the iterative renormalization group calculation, which is
described in the next section.

5.4 Renormalization group transformation of Kondo Hamiltonian
To perform the iterative procedure, it will be convenient to write the Hamiltonian in the following
form

HN = Λ(N−1)/2[

N−1∑
n=0

Λ−n/2
(
f+
n fn+1 + f+

n+1fn
)
− J̃f+

0 σf0 · τ ], (45)

so that the original Hamiltonian can be recovered by

H = lim
N→∞

Λ−(N−1)/2HN . (46)

The scaling factor of Λ(N−1)/2 will be useful for the discussion of fixed points, which follows later.
Now we have a recursion relation for the Hamiltonians HN ,

HN+1 = Λ1/2HN + f+
N+1fN + f+

NfN , (47)

which is nearly the definition of the renormalization group transformation for this system. The
strategy is as follows. Diagonalise each HN , calculate the matrix elements of HN+1 in the rep-
resentation in which HN is diagonal, and finally diagonalise HN+1. In very general terms, the
diagonalised Hamiltonian HN can be expressed as

HN =
∑
m
E(m) |m〉 〈m| , (48)

with eigenstates |m〉. The next Hamiltonian to be diagonalised is then

HN+1 =

Nmax∑
m

Ẽ(m) |m〉 〈m|+
Nmax∑
m,m′

[g(m,m′) 〈m|m′〉+ h.c.], (49)

where g(m,m′) = 〈m| f+
n |m′〉 and Ẽ(m) = Λ1/2E(m). The truncation of the sum to Nmax is

a practical matter for the numerical iteration, as the matrices become very large very soon. The
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question is then, which states are to be retained in the calculation? The ultimate aim of the cal-
culation is to determine the thermodynamic quantities at very low temperature. Therefore, only
the Nmax eigenstates with the lowest many-particle energies are kept, as the higher excited states
are too high energetically to be important for the thermodynamics. What this number amounts to
is dependent on the problem at hand. In Wilson’s case, it proved accurate to keep Nmax = 1000
at each step. Also, in retaining a fixed number at each iteration, the old Hamiltonian is mapped
onto a new one of the same form at each stage, with renormalized parameter set {Ẽ(m), g(m,m′)}.

The actual renormalization group transformation subtracts the ground state energy and thus reads

HN+1 = T [HN ] = Λ1/2HN + f+
N+1fN + f+

NfN+1 − EG,N+1, (50)

where EG,N+1 is chosen such that the HN+1 has ground state energy 0. The transformation takes
as input the eigenvalues HN and the matrix elements fN and puts out the eigenvalues of HN+1

and the matrix elements of fN+1.

It can be seen that the renormalization group transformation has two fixed points, by looking
at the form of HN as N → ∞. The two fixed points are J̃ = 0 and J̃ = −∞. The excitations in
both cases correspond to a single particle Hamiltonian with the spin impurity decoupled.

For J̃ = 0, the Hamiltonian describes a free electron and it can be solved by finding the sin-
gle electron eigenstates. This procedure is done numerically, using the iterative renormalization
group transformations on a computer. The result is what is called a limit cycle, where the renor-
malization group transformation goes back onto itself after two transformations instead of one.
The fixed point is then for transformations T 2. One thus gets two sets of single particle energy
levels, one for even N and one for odd N . This was the reasons for introducing the factor Λ(N−1)/2

in the definition of HN , because it is needed to have a fixed point in the large N limit for the low in-
stead of the high eigenvalues of the Hamiltonian, as we truncate the higher ones during the process.

For the case of J̃ = −∞, which is the strongly coupled anti-ferromagnetic case, the J̃ term in
the Hamiltonian is much larger than the rest. This term is −J̃f+

0 σf0 · τ and the impurity is
coupled to the first site on the chain in a singlet ground state. The excited states of this term
have infinite energy, and as such, the impurity and the first site are effectively decoupled from the
rest of the chain. The states of the rest of the Hamiltonian are then free from this coupling and
described by

HN (J̃ → −∞) = constant + Λ(N−1)/2
N−1∑
n=1

Λ−n/2
(
f+
n fn+1 + f+

n+1fn
)
. (51)

We see that the low energy excitations of HN (J̃ = −∞) and HN−1(J̃ = 0) are the same, though
now with the even and odd single particle energy levels exchanged.

The big question now is, how do the Hamiltonians behave in the vicinity of the fixed points?
Parts of this discussion are very technical in Wilson’s account, so, for the sake of brevity, we will
sometimes oversimplify and skip over some steps. The unsatisfied reader is referred to the original
article [3].

We begin by searching for an effective Hamiltonian near the fixed points. Then we proceed by
linearising these Hamiltonians around the fixed points to find out whether we are dealing with
stable, unstable or marginal fixed points. This will provide us with the renormalization group flow
of the system and thus the behaviour as we go to smaller energy regimes.

We look for a Hamiltonian of the form H ′ = H∗+ δH, where H∗ corresponds to a fixed point. δH
depends only on τ and the first few fn, as they are likely to be the most important interactions.
We also assume δH to be small in the vicinity of the fixed point. We then have

H ′N = H∗N + Λ(N−1)/2δH, (52)

where the factor Λ(N−1)/2 appears again to correspond with the definition of H earlier. Both H∗N
and H ′N satisfy the recursion relations (47). The difference H ′N − H∗N then satisfies a linearised
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renormalization group equation with a linear operator as discussed in section 5.2. We would like to
expand δH in terms of the local interaction terms δHm, δH =

∑
m δHm(N). Since we are working

in a limit cycle, the expansion of δH in terms of eigenvalues and eigenoperators should look like

δH =
∑
m

cmλ
N/2
m O∗m, (53)

where O∗m are the eigenoperators, λN/2m the eigenvalues and cm constants, depending on the choice
of δHm.

To find the eigenvalues of the linear operator, we need a form for δHm. There are a few physical
consideration to take into account in choosing a suitable form for δHm. First of all, we need the
minimum possible number of operators f0 and f1, since each contributes a factor of Λ−N/2 and
Λ−3N/2 to the N dependence of the eigenvalues, respectively. Secondly, we want the δHm to have
the same symmetries as H itself. It must conserve charge, total spin and particle-hole symmetry.
After these considerations, we are left with three possible forms for δHm, namely

δH1 = f+
0 σf0 · τ ,

δH2 = f+
0 f1 + f+

1 f0,

δH3 = (f+
0 f0 − 1)2.

It may seem as though δH3 violates particle-hole conservation, but after multiplying out and
converting to normal ordering, the f+

0 f0 term is cancelled and one is only left with quartic terms.
To simplify the technicalities performed by Wilson, consider the following. The operator f+

0 can
be expressed in terms of operators for particles and holes, p+

n and hn, respectively. One can write

f+
0 = Λ−(N−1)/4

∑
n

α0,n

(
p+
n + hn

)
, (54)

where α0,n is a constant. The equation for f+
1 is similar, though has a prefactor Λ−3(N−1)/4. To

find the eigenvalues of the linearisation, we now plug equation (54) and the hermitian conjugates
into the δHm and compare these to (53). For J̃ = 0, we find that δH1 has eigenvalue Λ0 and
thus is a marginal operator. δH2,3 both return irrelevant eigenvalues. We conclude that J̃ = 0

is a marginal fixed point. Note that the operator δH1 only exists for the J̃ = 0 fixed point. The
J̃ = −∞ fixed point has no τ operator, because the coupling between the impurity and the first
site removes these from the rest of the chain, as we have seen. Therefore, J̃ = −∞ has only
irrelevant eigenvalues, and as such, J̃ = −∞ is a stable fixed point.

One can determine the behaviour of the cross-over region by performing numerical calculations
with the effective Hamiltonian (51) for values near the J̃ = 0 fixed point. It is found that there
is a crossover from J̃ = 0 fixed point for small N to J̃ = −∞ fixed for large N . This numerical
result confirms our analysis of the eigenvalues near the fixed point.

For calculations in the low temperature range for the magnetic susceptibility, it turns out to
be necessary to know how the energy levels of HN approach their limiting values for N → ∞.
From analytic analysis, one finds that these can be calculated from another effective Hamiltonian,
involving a ’pseudo-potential’. This turns out to be our original Hamiltonian with exactly those
terms added which we determined from our discussion of δH. Since we are interested in the low
temperature regime, we need the effective Hamiltonian for the corresponding fixed point. Thus,
for the J̃ = −∞ fixed point, we have

HN = Λ(N−1)/2

(
N−1∑
n=1

Λn/2
(
f+
n fn+1 + f+

n+1fn
)

+ w1(J̃)
(
f+

1 f2 + f+
2 f1

)
+ w2(J̃)

(
f+

1 f1 − 1
)2)

,

(55)
where w1 and w2 are parameters to be determined numerically.

5.5 Calculation of thermodynamical quantities
In this review, the consideration of the thermodynamical quantities of the Kondo problem will be
restricted to the zero temperature limit of the magnetic susceptibility. This has a few reasons.
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First of all, the primary aim of this review is to show how the renormalization group approach was
able to reach these answers conceptually. Secondly, Wilson’s steps in this part of the calculation
are plenty, pretty technical and hardly summarisable. They also involve a lot of numerical calcula-
tions, which aren’t interesting to sum up. Rather, a short general idea will be given of how Wilson
came to the zero temperature magnetic susceptibility from where we left of in the last section.
Once again, the eager eyes are referred to [3].

The impurity susceptibility is given by

χimp(T ) =
(gµB)

2

kBT

(
lim
N→∞

TrS2
Nz
e−HN (J̃)/kBT

Tre−HN (J̃)/kBT
−

TrS2
Nz
e−HN (0)/kBt

Tre−HN (0)/kBT
+

1

4

)
(56)

To calculate the low temperature range of the magnetic susceptibility, we need the effective Hamil-
tonian near the J̃ = −∞ fixed point, that is, equation (55). w1 and w2 are parameters which
are determined by fitting them to the lowest excitations of the numerical iterations of (55). w2 is
compared with the single particle particle excitation E1,N and for w2 this is done for the lowest
two particle excitation E2,N . Once this iteration approaches the large N limit, and as such, the
strong coupling regime, w1 and w2 become smaller and smaller, because they represent the irrel-
evant operators in that region. The energy range of the full Hamiltonian become smaller as well,
as we are moving to the outer shells of electron states. Once the temperature is low enough, the
correction terms of (55) can be treated in lowest order perturbation theory. This is the strategy
which Wilson followed to calculate the magnetic susceptibility in the very low temperature regime.
The result is

χimp(T ) =
(gµB)

2
(0.4128± .002)

4kBTK
, (57)

where TK is the Kondo temperature. This is finite as T → ∞, which was the ultimate aim of
solving the Kondo problem. A satisfactory theory has been developed for describing the system of
a magnetic impurity in a non-magnetic metal down to zero temperature range.

Wilson remarked at the end of his article that further studies on the subject would likely include
the effects of potential scattering, studies of dynamical properties like the resistivity, attempts to
include d-wave coupling to the impurity and the study of impurity-impurity effects. In the years
following, it was thought that these were mere cases of rounding up calculations, but that they
were inhibited by limited computing power. Researchers lost their attention and pursued other
studies. At the start of the eighties, however, there was a new theoretical development. This will
be discussed in the next section.

6 The Bethe Ansatz approach
In the previous section a qualitative understanding of the Kondo problem was obtained by Wilson
in the seventies, which used the machinery of the renormalization group. The obtained results
were confirmed by exact solutions to the Kondo problem found by two other physicists. Andrei
and Wiegmann solved the s-d exchange model independently using an ansatz introduced by Bethe
in 1931. By doing so they immensely increased the popularity of the branch of integrable systems
and supported the method of the renormalization group by confirming its validity. In the next
section we formulate a step by step methodology for applying the tool, which is followed by an
implementation of the approach in the Kondo problem. The main resources used are [7], the lecture
notes on the Bethe Ansatz from J.S. Caux and the original papers by Andrei [10] and Wiegmann
[4].

6.1 The General Methodology
The Bethe ansatz can be used for extracting eigenvectors and eigenvalues of model Hamiltonians
which describe short-range interactions. It does this by rewriting the many-body wave functions
as products of separate two-body scattering events. In this section a general methodology is
introduced based on the lecture notes on the Bethe ansatz from J. S. Caux and [11].
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1. In the case of N particles, they are put on a ring with circumference L. This way we im-
pose periodic boundary conditions and translational symmetry. For free particles the wave
function is described by

ψ (x1 . . . xN ) =
∑
P∈SN

N−1∏
i=1

θ
(
xPi+1 − xPi

)
APe

ix1k1+...+ixNkN , (58)

where, depending on whether it is a boson or a fermion, the equation should be symmetrised
or anti-symmetrised. In case of spin dependence: ψ (x1 . . . xN ) = ψ (x1 . . . xN )α1...αN

2. Look for configurations that solve the Schrödinger equation at the point of local interactions.
This way it is possible to find the scattering matrix Sij.

3. We now have an expression for the scattering matrix but we need to check for consistency.
Because we are dealing with identical particles we have to watch that permutations of the
system that result in the same configuration of particles must have the same wave function.
This constrains the two-body scattering and is known as the Yang-Baxter equation. Basically
it dictates how a three-body problem is described in two-body matrices. The Yang-Baxter
equation has the form:

S3,2S1,3S1,2 = S1,2S1,3S2,3. (59)

4. By imposing boundary conditions on the wave function proposed in (58) we find

e
−ikjL

2 Axj ,PN−1
= e

ikjL

2 APN−∞xj (60)

and swaps the most left particle xj = −L2 with the most right particle xj = L
2 .

5. A different way to find an expression for Axj ,PN−1
is by starting in a configuration xj ,PN−1

and scattering across all other particles using the scattering matrices Sj,i where, of course,
j 6= i. The Yang-Baxter equation helps you with the identity PN−1 = 1N−1 and you end up
with

A1N−1,xj = ZjAxj ,1N−1
where Zj = SJ,N · · ·Sj,j+1Sj,j−1 · · ·Sj,1. (61)

Combining the two expressions in (3) and (61) we get

ZjAxj ,1N−1
= e−kjLAxj ,1N−1

, (62)

which has reduced it to a set of eigenvalue problems.

6. The hardest part is solving this set of problems specified in (62) and by doing so you’ll end
up with the Bethe momenta and the total energy of the system.

When we spell it out like this, it looks very straightforward but especially finding solutions to the
Yang-Baxter equation and of course the last step is certainly not trivial. In the next section we’re
going to implement these steps for the Kondo problem, resulting in an expression for the magnetic
susceptibility.

6.2 Using the Bethe Ansatz to solve the Kondo problem
In class we used the Bethe Ansatz to solve the Lieb-liniger model. The repulsion term in the
Hamiltonian dictates how two particles scatter and in that case it was characterized by a simple
phase shift. In the Kondo Hamiltonian this is not the case because the interaction is due to spin
exchange and we somehow have to deal with this internal degree of freedom. The derivation in
this section follows roughly the steps taken by Andrei in [10] and Wiegmann in [4]. To keep the
derivation clear we sometimes used a different notation for certain formulas or expressions plus we
had to make decisions on how thorough we could be on certain aspects of the derivation. For the
sake of brevity, some steps are omitted.

The representation of the Kondo Hamiltonian used in this part has the following form

H = −i~vF
∑
σ=↑↓

∫ L
2

−L2
ψ†σ (x) ∂xψ (x) dx+

Ja

2

∑
σ,σ′

ψ†σ (0)ψσ′ (0)~σσσ′ · ~S (63)
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where a is the lattice spacing, J the spin-exchange interaction and ~S the impurity spin. Now we
can start to implement the machinery from the previous section. First of all, we put the impurity
on x = 0 and order the N particles on a line segment of size L. The wave function has the shape
of a plane wave with the form

ψ (x1 . . . xN )α1...αN
= ei

∑N
j=1 kjxj

∑
P
APα1...αN ,α0

, (64)

where the ki are the momenta and ai labels the spin at each site (a0 states the spin of the impurity).
With this wave function we can start solving the schrödinger equation for particle j interacting
with the impurity. Think of a certain ordering P and a permutation Q both containing N particles
and the impurity site. In this case the scattering matrix connects the two in the following way

S0jAPα1...,αj ,...αN ,α0
= AQα1...,α′j ,...αN ,α

′
0
, (65)

where the matrix S is the mapping between the amplitude AP of the configuration P on the left
of the impurity and AQ is the amplitude of the configuration Q. The calculations for finding the
scattering matrix for the problem at hand were based on the calculation of Yang published in
1966 ([12]) on spin interactions in a one dimensional Heisenberg chain and can be written in the
following form

S0j =
Ij0 − icP j0

1− ic
, (66)

where P j0 = 1
2

(
Ij0 + ~σj · ~σ0

)
exchanges the spin of the impurity and the conductivity electron j,

and c is a function of J . With this scattering matrix we can check if the theory is still consistent.
Because we are dealing with indistinguishable particles, a different order of interaction should not
result in a different result. To check this, the following relation has to hold

SijSi0Sj0 = Sj0Si0Sij . (67)

We can account for this with the choice Sij = P ij , which physically means that when one electrons
crosses another, they interchange their spin labels. With the consistency check in place, we can
enforce periodic boundary conditions to find an expression for the operator Zj . Zj represents a
scattering process where a particle j interacts with all the particles on the circle, which stretches
length L.

Zj = P jj−1 . . . e−iφ
Ij0 − icP j0

1− ic
. . . P jj+1. (68)

This operator can be related to an eigenvector e−kjL and it is the Bethe momentum kj that we
are after, because we can use these to calculate the energy of the system. Solving this eigenvalue
problem is not trivial and can be done by using the quantum inverse scattering method together
with the transfer matrix approach of Baxter. It goes under the name of the algebraic Bethe Ansatz.
Doing so results in an expression for the Bethe momentum,

kj =
2π

L
nj +

1

L

M∑
γ=1

[Θ (2Λγ − 2)− π] , (69)

where Θ (Λ) = −2arctan
(

Λ
c

)
and nj are quantum numbers. This expression is characterized by

the conservation of the total spin and projection of the spin on the z−axis and generates physical
quantities Θγ called spin momenta that are associated to down spins by M = N+1

2 − Sz. The
possible values for the spin moment Θγ are determined by M equations and the set of quantum
numbers Iγ via the formula

NΘ (2Λγ − 2) + 2Θ (2Λ) = −2πIγ +

M∑
δ

Θ (Λγ − Λδ) (70)

The combination of the quantum numbers {nj} and {Iγ} determine the shape of the ground state.
The ground state is found by choosing Iγ to be consecutive as Iγ+1 = Iγ + 1, take the minimal
levels for nj and look at the thermodynamical limit where N → ∞. In that situation the spin
momenta will become dense and consecutive levels should satisfy

σ (Λ) = f (Λ)−
∫
dΛ′

π

c

c2 + (Λ− Λ′)
2σ (Λ′) , (71)
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where f (Λ) = 2c
π

[
N

c2+4(Λ−1)2
+ 1

c2+4Λ2

]
. This expression is solvable and results in a expression for

the ground state. Excited states can be generated by changing the quantum numbers with respect
to their ground state values. Now that we can find a expression for the ground state, we can discuss
the magnetic susceptibility. The susceptibility is found with the formula χ−1 = µ−2

[
∂2E(S)
∂S2

]
s=0

where E (S) is the minimum energy in the presence of magnetization µS and S = N − 2M . We
can finally get to the expression for the magnetic susceptibility

χ =
1

π
µ2N

e +N iexp
(
π
C

)
Ne

L exp
− π
C

(72)

where the leading term is induced by the impurities.

We conclude that the Bethe ansatz approach leads to an exact solution for the magnetic sus-
ceptibility for the system of magnetic impurities in a non-magnetic metal.

7 Conclusion
The history of the Kondo problem has been discussed in broad terms. A seemingly simple problem
has caused many physicists to come up with inventive approaches over the years. As such, the
experimental anomaly of resistance minima in metals has contributed greatly to modern theoretical
physics. Ideas from the renormalization group from field theory and critical phenomena have been
generalised to be applicable to a broader set of physical problems. The Bethe ansatz has confirmed
presumptions from the renormalization group approach. In doing so, it has contributed consider-
ably to exact calculations on models that are experimentally testable. The further developments
in theories surrounding magnetic impurities in non-magnetic metals have been used to try and
describe high temperature superconductors too, among other phenomena. It is believed that the
strongly correlated nature induced by the short range Coulomb interaction at the impurity sites
is the key to understanding the anomalous behaviour of high temperature superconductors. Thus,
the history of the Kondo problem as described in this review is only the beginning of an on-going
story of strongly correlated systems.
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