
Statistical Physics & Condensed Matter Theory I:

Exercise

Conductance through an Anderson impurity

The influence of interactions on electronic transport properties can be observed in many nanos-
tructures, in particular in a so-called quantum dot, namely a spatially isolated island in and out
of which electrons can tunnel. Due to its small size, the quantum dot supports discretely-spaced
energy levels; considering only one of these levels for simplicity, we model the dot with the Hamil-
tonian

Hd =
∑
σ=↑,↓

ξdσd
†
σdσ + Und↑nd↓

in which dσ, d
†
σ are the annihilation/creation operators for a spin-σ electron in the considered

level on the dot (they obey the canonical equal-time anticommutation relations {dσ, d†σ′} = δσσ′),
ξdσ = εdσ − µ is the on-site energy (including chemical potential shift set by a gate voltage),
ndσ ≡ d†σdσ and U is a Hubbard-like repulsive interaction which is counted if the dot is doubly
occupied.

To investigate transport properties through the dot, we put two conducting leads to the left
and right. These leads are described by the Hamiltonians (in which the index k can be thought
of as a momentum-like label)

Hl =
∑
kσ

ξkl
†
kσlkσ, Hr =

∑
kσ

ξkr
†
kσrkσ,

in which lkσ, l
†
kσ are the annihilation/creation operators for fermions in the left lead, which obey

the canonical equal-time anticommutation relations {lkσ, l†k′σ′} = δkk′δσσ′ , and rkσ, r
†
kσ are the

corresponding ones for the right lead. For simplicity, we have taken the set of one-body energies
ξlk, ξrk to be the same in the left and right leads ξlk = ξrk ≡ ξk, and are neglecting any interaction
effects in the leads.

Since they are in close proximity, the leads and the dot hybridize, meaning that electrons can
effectively hop from/to leads to/from dot. This is modelled using the tunneling Hamiltonian

Ht = Hld +Hrd =
∑
kσ

[
tll
†
kσdσ + t∗l d

†
σlkσ

]
+
∑
kσ

[
trr
†
kσdσ + t∗rd

†
σrkσ

]
in which tl and tr are complex amplitudes quantifying the intensity of the hopping. The whole
setup, whose full Hamiltonian is thus H = Hd +Hl +Hr +Ht, is illustrated in Fig.

AndersonDot
1.

The leads will act as reservoirs for electrons: putting the leads at different chemical potentials
(voltage), electrons will tend to hop from one lead to the dot and then to the other lead, leading
to an observable current. Since the dot can only accommodate up to two electrons at a time,
and since the electrons are strongly interacting when they sit on the dot, this current will be
a complicated function of the applied voltages, interaction U and tunneling coefficients. This
exercise aims at calculating the so-called conductance through the dot.
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Figure 1: Cartoon of the experimental setup for measuring the conductance through an Anderson-
type impurity. The left and right leads, on which a finite (static) voltage difference is applied to
drive the current, couple to the dot via the tunneling Hamiltonians Hld +Hrd. On the dot itself,
a single level is available, with a Hubbard-type interaction energy cost U for double occupancy.
The dot has a chemical potential set by a gate voltage. AndersonDot

a) The (particle number) current going into the left lead can be written as the time derivative
of the total number of electrons in the left lead,

Il =
d

dt
Nl = i [H,Nl] , Nl ≡

∑
kσ

l†kσlkσ.

Show explicitly that

Il = Jl + J†l , where Jl ≡ −itl
∑
kσ

l†kσdσ.

Note (you don’t need to rederive this, it’s obvious) that this implies the similar-looking formula

Ir =
d

dt
Nr = Jr + J†r , where Jr ≡ −itr

∑
kσ

r†kσdσ

which will be of use later on.

b) It is possible to choose a smart basis for our fermions. Namely, in each fixed k, σ subsector,
let us define the unitary transformation U into even and odd combinations (u, v are parameters
to be determined later; they do not depend on k, σ)(

ekσ
okσ

)
≡ U

(
lkσ
rkσ

)
=

(
u v
−v∗ u∗

)(
lkσ
rkσ

)
, |u|2 + |v|2 = 1.

Since this tranformation is by definition unitary, the ekσ and okσ obey canonical equal-time an-
ticommutation relations {ekσ, e†k′σ′} = δkk′δσσ′ and similarly for okσ, with e and o operators
having trivial (vanishing) anticommutation relations with each other. The lead Hamiltonians thus
naturally preserve their form under this transformation,

Hl +Hr = He +Ho, He =
∑
kσ

ξke
†
kσekσ, Ho =

∑
kσ

ξko
†
kσokσ.

Show that a smart choice of the parameters u, v (which you are asked to give explicitly) turns
the tunneling Hamiltonian into the particularly simple form

Ht = Hld +Hrd =
∑
kσ

t̄
[
e†kσdσ + d†σekσ

]
, t̄ ≡

√
|tl|2 + |tr|2,

in other words that the tunneling Hamiltonian only involves the even and impurity fermion modes,
but not the odd ones.
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c) Let us now apply a perturbation in the form of a static voltage difference between the leads. A
time-independent current will develop, which we define as I = Il. Note however that in this time-
independent situation, we must have Il = −Ir by charge conservation (the dot cannot accumulate
charge). Therefore, we are entitled to equivalently consider any linear combination of the form

I = αIl − (1− α)Ir.

Show that under a judicious choice of the free parameter α (which you are asked to give explicitly),
we can write the current operator in terms of the impurity modes d and the odd fermion modes
o only,

I = J + J†, J ≡ it̃
∑
kσ

o†kσdσ, t̃ ≡ tltr
t̄
.

d) Let us now treat the voltage difference between the leads perturbatively using linear response
theory. Our starting point is the retarded current-current correlation function,

CIIret(t) ≡ −iθ(t)〈[I(t), I(0)]〉

where the average is taken using the full unperturbed Hamiltonian H = Hd + He + Ho + Ht for
ξlk = ξrk ≡ ξk (in the unperturbed system, the leads are at same voltage).

Using the following definitions of the ‘greater’ and ‘lesser’ Green’s functions of the odd electrons
and of the impurity (careful with the time arguments!),

Go,>kσ (t1 − t2) ≡ −i〈okσ(t1)o†kσ(t2)〉, Go,<kσ (t1 − t2) ≡ i〈o†kσ(t2)okσ(t1)〉,
Gd,>σ (t1 − t2) ≡ −i〈dσ(t1)d†σ(t2)〉, Gd,<σ (t1 − t2) ≡ i〈d†σ(t2)dσ(t1)〉,

show that the retarded current-current function can be written as

CIIret(t) = −iθ(t)
∑
kσ

|t̃|2
[
Go,<kσ (−t)Gd,>σ (t)− Go,>kσ (−t)Gd,<σ (t)− (t→ −t)

]
.

For future reference, the conductance G which we will want to calculate is defined by the
zero-frequency limit of the (time) Fourier transform of CIIret,

G ≡ lim
ω→0

−e2

ω
Im CIIret(ω), CIIret(ω) =

∫ ∞
−∞

dteiωtCIIret(t).

N.B.: INFO BLOCK !!!
You can use the equations in this greyed-out part without rederivation.

The retarded current-current function can be Fourier transformed to frequency space as
follows. Using the facts that

[Go,>(t)]∗ = [−i〈o(t)o†(0)〉]∗ = i〈o(0)o†(t)〉 = −Go,>(−t), [Go,<(t)]∗ = −Go,<(−t)

and similar-looking equations for Gd, it can easily be shown that

Im(CIIret(ω)) =
−1

2

∫ ∞
−∞

dteiωt
∑
kσ

|t̃|2
[
Go,<kσ (−t)Gd,>σ (t)− Go,>kσ G

d,<
σ (t)− (t→ −t)

]
.

Using the conventions

G(t) =

∫ ∞
−∞

dω

2π
e−iωtG(ω), G(ω) =

∫ ∞
−∞

dteiωtG(t),
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leads after simple manipulations to

Im CIIret(ω) = −|t̃|
2

2

∑
kσ

∫ ∞
−∞

dω1

2π

{
Go,<kσ (ω1)

[
Gd,>σ (ω1 + ω)− Gd,>σ (ω1 − ω)

]
−Go,>kσ (ω1)

[
Gd,<σ (ω1 + ω)− Gd,<σ (ω1 − ω)

]}
.

Making use of the following identities relating the greater/lesser Green’s functions to the
spectral function

G>(ω) = −i(1− nF (ω))A(ω), G<(ω) = inF (ω)A(ω),

in which nF (ω) = 1
eβω+1

is the usual Fermi-Dirac distribution, the imaginary part of the
retarded current-current function can then be rewritten as

Im CIIret(ω) =
|t̃|2

2

∑
kσ

∫ ∞
−∞

dω1

2π
Aokσ(ω1)

{
Adσ(ω1 + ω)[nF (ω1 + ω)− nF (ω1)]− (ω → −ω)

}
.

e) At this point, you should notice the truly remarkable fact that Im CIIret(ω) is given by corre-
lations of the odd fermions and impurity ones. Remember that we had shown earlier that only
the even fermions couple to the dot! Therefore, the odd fermions still are described by the free
Hamiltonian Ho =

∑
kσ ξko

†
kσokσ, and they do not couple to the rest of the system.

Show that the retarded Green’s function of the odd fermions is

Go,retkσ (ω) =
1

ω − ξk + iη
.

You can do this either by using the Matsubara formulation of the functional field integral to
calculate the imaginary-time function Gokσ(iωn) ≡ 〈ψ̄kσnψkσn〉 (performing the substitution iωn →
ω+ iη at the end of the calculation) or by calculating this function ‘canonically’ from its definition

Go,retkσ (t) = −iθ(t)〈
{
okσ(t), o†kσ(0)

}
〉

and Fourier transforming the result using the conventions Gret(ω) =
∫∞
−∞ dteiωt−η|t|Gret(t) (in-

cluding a convergence factor η → 0+).

f) Using the relationship between the retarded function and the spectral function

A(ω) = −2Im Gret(ω)

and the relation Im 1
ω−ξ+iη = −πδ(ω− ξ) coming from the Dirac identity, simplify the imaginary

part of the current-current function to

Im CIIret(ω) =
|t̃|2

2

∑
kσ

{
Adσ(ξk + ω) [nF (ξk + ω)− nF (ξk)]−Adσ(ξk − ω) [nF (ξk − ω)− nF (ξk)]

}
.

Show that the conductance itself (see again the definition given earlier in d) is given by

G = e2
∑
kσ

|t̃|2Adσ(ξk)

[
−∂nF (ξ)

∂ξ

]∣∣∣∣
ξk

.

The conductance is thus a direct measurement of the spectral function of electrons on the dot.
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g) Let us now turn to the problem of calculating Adσ(ω). The leftover part of our Hamiltonian
(Ho has been dealt with and is thus ignored from now on) is

H = Hd +He +Ht =
∑
σ

ξdσd
†
σdσ + Und↑nd↓ +

∑
kσ

ξke
†
kσekσ +

∑
kσ

[
t̄ e†kσdσ + t̄∗d†σekσ

]
.

Let us now consider the functional field integral representation for this Hamiltonian (directly in
the Matsubara representation). Introducing Grassmann coherent states ψkσn, ψ̄kσn for the even
fermion modes (n is thus the Matsubara frequency index), and φσn, φ̄σn for the impurity modes,
we can write the partition function as

Z =

∫
D(φ̄, φ)

∫
D(ψ̄, ψ)e−Sd−Se−St

in which

Sd[φ̄, φ] ≡
∑
σn

φ̄σn [−iωn + ξdσ]φσn +
U

β

∑
n,n′,m

φ̄↑n+mφ̄↓n′−mφ↓n′φ↑n,

Se[ψ̄, ψ] ≡
∑
kσn

ψ̄kσn [−iωn + ξk]ψkσn, St[ψ̄, ψ; φ̄, φ] ≡
∑
kσn

[
t̄ ψ̄kσnφσn + t̄∗φ̄σnψkσn

]
.

The even modes appear as bilinears; show that they can be ‘integrated out’, yielding the effective
theory for the impurity modes

e−Sd[φ̄,φ]

∫
D(ψ̄, ψ)e−Se[ψ̄,ψ]−St[ψ̄,ψ;φ̄,φ] = C × e−Seff [φ̄,φ]

where C is some φ, φ̄-independent quantity (so we can forget about it and set it to 1 here) and

Seff [φ̄, φ] ≡
∑
σn

φ̄σn [−iωn + ξdσ + Σ(iωn)]φσn +
U

β

∑
n,n′,m

φ̄↑n+mφ̄↓n′−mφ↓n′φ↑n,

in terms of the even electron ‘self-energy’ function which is defined as

Σ(iωn) ≡
∑
k

|t̄|2

iωn − ξk
.

h)* The effective theory we have obtained is actually quite simple, since it only involves the
impurity fermions. Let us now make the further simplifying assumption that the even electron
self-energy is equal to some constant, Σ(iωn) ≡ Σ− i

2Γ (with Σ,Γ ∈ R). Show1 that the retarded
Green’s function of the impurity fermions then takes the form (here, for spin ↑, the expression for

Cd,ret↓ being similar)

Cd,ret↑ (ω) =
1− 〈nd↓〉

ω − ξd↑ − Σ + i
2Γ

+
〈nd↓〉

ω − ξd↑ − U − Σ + i
2Γ
.

Show that the spectral function then is given by the sum of two Lorentzians,

Ad↑(ω) = −2Im Cd,ret↑ (ω) =
(1− 〈nd↓〉)Γ

(ω − ξd↑ − Σ)2 + (Γ/2)2
+

〈nd↓〉Γ
(ω − ξd↑ − U − Σ)2 + (Γ/2)2

.

Make a sketch of the expected conductance G as a function of ξd↑ (thus as a function of the
gate voltage applied on the dot), assuming that the interaction U and inverse lifetime ' Γ take
some nonzero values (you can put Σ to zero), and that the temperature is zero. Give a physical
interpretation of whichever peaks you find in the conductance G(ξd↑).

1Hint: consider inserting the identity 1 = (1 − nd↓) + nd↓ in the correlation function for the spin-up impurity
modes, and using the fact that 1 − nd↓ projects onto the subspace with nd↓ = 0, and that nd↓ projects onto the
subspace with nd↓ = 1.
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