
Statistical Physics & Condensed Matter Theory I:

Exercise

Mean-field theory for the Anderson impurity model

A given metal sample, no matter how pure, will inevitably contain some form of randomly-
distributed impurities which can sometimes greatly affect physical properties (like conductivity).
In this problem, we study a simplified situation in which a single impurity is embedded in the
crystal.

Our starting point is the Hamiltonian for the conduction electrons, which we write as

Hc =
∑
k

∑
σ

(εk − µ)c†kσckσ

where c†kσ and ckσ are respectively creation and annihilation operators for the conduction electrons,

obeying the canonical anticommutation relations {ckσ, c†k′σ′} = δk,k′δσσ′ . The precise form of the
dispersion relation εk is not important, although the existence of a well-defined Fermi surface
will be assumed later on. Note that we have explicitly written the chemical potential µ for the
conduction electrons directly inside their Hamiltonian.

Somewhere within the metal sits an impurity (different type of atom). For simplicity, we
represent this atom as a single orbital level (typically the outermost orbital of the impurity, e.g.
the d-shell for a Fe atom), and we write creation and annihilation operators for electrons on this
orbital as d†σ, dσ respectively. For the impurity level, we take a Hubbard-like Hamiltonian:

Himp = Hd +HU =
∑
σ

(εd − µd,σ)d†σdσ + Und↑nd↓.

Here, εd is a given one-body energy, µd,σ are impurity chemical potentials defined for later conve-
nience, U is a Hubbard interaction parameter and ndσ ≡ d†σdσ are occupation number operators
for the impurity level.

Physically, electrons propagating in the metal will have a wavefunction which overlaps with
that of the impurity level. The electrons will thus be able to hop on or off the impurity due to the
hybridization between these states. This is taken into account in second quantization by including
a hopping term in the Hamiltonian of the form

Hhop =
∑
k

∑
σ

(tkd
†
σckσ + t∗kc

†
kσdσ)

in which tk are given complex amplitudes (they depend on the microscopic details). The full
Hamiltonian for the Anderson impurity model is thus

HAnd = Hc +Himp +Hhop.

We would like to know what happens: does the impurity capture an electron? Two? Does the
impurity spontaneously magnetize (that is, does it tend to capture one spin projection more than
the other)? This problem addresses this question.

1



a)

The U term is difficult to handle, since it contains a product of four fermionic operators. We will
thus simplify the problem by making a mean-field approximation. Argue that we can take

HU → HMF
U = U (〈nd↑〉nd↓ + 〈nd↓〉nd↑ − 〈nd↑〉〈nd↓〉) .

b)

Write down the coherent state functional integral for the partition function for this mean-field the-
ory, in the Matsubara representation (use the notation ψ̄, ψ and φ̄, φ for the Grassmann variables
for the conduction electrons and impurity electrons, respectively).

c)

Show that the partition function can also be written as (hint: consider a shift ψ, ψ̄ → ψ′, ψ̄′)

Z = eβU〈nd↑〉〈nd↓〉
∫
D(ψ̄′, ψ′)e−S[ψ̄′,ψ′]

∫
D(φ̄, φ)e−S[φ̄,φ],

in which the fields are decoupled and have free actions

S[ψ̄′, ψ′] =
∑
k

∑
σ

∑
n

ψ̄′kσn[−iωn + εk − µ]ψ′kσn,

S[φ̄, φ] =
∑
σ

∑
n

φ̄σn[−iωn + εd − µd,σ + U〈nd,−σ〉+ Σ(iωn, µ)]φσn

in which we have defined the ‘self-energy’ of the impurity electrons as

Σ(iωn, µ) ≡
∑
k

|tk|2

iωn − εk + µ

which we will explicitly calculate later.

d)

Calculate the partition function explicitly by performing the necessary Grassmann integrations,
and show that the free energy F = −T lnZ can be written

F = −T
∑
k

∑
σ

∑
n

ln[β(−iωn+εk−µ)]−T
∑
σ

∑
n

ln[β(−iωn+εd−µd,σ+U〈nd,−σ〉+Σ(iωn, µ))].

e)

Let us now look at the self-consistency of the mean-field approach. Argue on the one hand from the
definition of the partition function that the expectation value of the impurity electron occupation
number must be given by

〈nd,σ〉 = − ∂F
∂µd,σ

,

and, on the other hand, that this derivative equals

− ∂F
∂µd,σ

= T
∑
n

1

iωn − εd + µd,σ − U〈nd,−σ〉 − Σ(iωn, µ)
.
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f)

We are now at the stage where we would like to evaluate 〈nd,σ〉 using the equation above, but
before we can proceed we must calculate the self-energy, which we do by first making a number of
approximations. First of all, we assume that the only important states of the conduction electrons
are those with an energy within a restricted band −D < εk < D. We can thus write

Σ(iωn, µ) =
∑
k

|tk|2

iωn − εk + µ
→
∫ D

−D
dερDOS(ε)

|t|2

iωn − ε+ µ

in which ρDOS(ε) is the density of states. We then assume that for states within the restricted
band, we have ρDOS |t|2 ' Γ/2π in which Γ is a positive constant. Show that under these assump-
tions, the self-energy takes the form1

Σ(iωn, µ)→ − Γ

2π
ln
iωn + µ−D
iωn + µ+D

.

g) *

Performing the Matsubara sum in question above is a nontrivial task2 (I give you the answer
here). Assuming that Σ(ω+ iδ, µ)→ Σr(µ) + i

2Γsgn(δ) for ω ∈ [−µ−D,−µ+D[, in which Σr(µ)
is a real-valued function, the result for the self-consistency equations becomes

〈nd,σ〉 =

∫ −µ+D

−µ−D

dω

2π

1

eβω + 1

Γ

(ω − εd + µd,σ − U〈nd,−σ〉 − Σr)2 + (Γ/2)2
+

1

eβz0 + 1

in which z0 = εd−µd,σ +U〈nd,−σ〉+O(Γ). Taking the T → 0 limit of this equation and assuming
infinite bandwidth D →∞, show that the self-consistency equations become (assuming z0 > 0)3

〈nd,σ〉 =
1

2
− 1

π
atan

(
εd − µd,σ + U〈nd,−σ〉+ Σr

Γ/2

)
.

h) *

Taking the impurity chemical potentials equal to the bulk one (µd,σ = µ), and defining a ≡
µ−εd−Σr

U and b ≡ 2U
Γ , can you convince yourself that solutions with 〈nd↑〉 6= 〈nd↓〉 exist for certain

values of a, b?4

1Hint: remember that
∫ b
a
dx
x

= ln b− ln a
2If you want to know, this is because the self-energy has two branch cuts.
3Hint: use partial fractions and the identity atan x = 1

2i
ln 1+ix

1−ix
4Hint: atan x = x− x3/3 + .... Also, you can for example assume that 〈ndσ〉 = 1

2
+ σδn in which δn << 1, and

that a ' 1
2
.
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