
Statistical Physics & Condensed Matter Theory I:

Exercise

Itinerant electrons with interactions: mean-field theory

We have seen that starting from Hubbard-like models (with on-site Coulomb interaction U > 0),
a Heisenberg model can be obtained by going to the strongly-interacting limit U → ∞ when the
system is half-filled (one electron per site on average).

What happens if U is not that large, and we’re working at generic fillings? Consider a d-
dimensional crystal with electrons interacting with a purely on-site Coulomb interaction U > 0.
In Fourier space, we can write the Hamiltonian as

H = H0 +Hint =
∑
k

∑
σ

εka
†
kσakσ +

U

2Ld

∑
kk′q

∑
σσ′

a†k+qσa
†
k′−qσ′ak′σ′akσ

in which εk is the kinetic energy part.
The interaction term is impossible to handle exactly. We could simply do perturbation theory

in U , but we don’t always want to assume that U is small. The purpose of this exercise is to show
you another way of handling this interaction.

The key is to find a reasonable way of rewriting the interaction term (containing 4 opera-
tors) into terms with 2 operators only (which can then be handled exactly). We thus make the
assumption (‘mean-field’) that we can replace the operator product according to

a†k+qσa
†
k′−qσ′ak′σ′akσ ' a†k+qσakσ〈a

†
k′−qσ′ak′σ′〉MF + a†k′−qσ′ak′σ′〈a†k+qσakσ〉MF

−a†k+qσak′σ′〈a†k′−qσ′akσ〉MF − a†k′−qσ′akσ〈a†k+qσak′σ′〉MF

−〈a†k+qσakσ〉MF 〈a†k′−qσ′ak′σ′〉MF + 〈a†k+qσak′σ′〉MF 〈a†k′−qσ′akσ〉MF

in which we take the ‘mean-field’ expectation values to be given by the (not yet determined)
parameters nkσ according to

〈a†kσak′σ〉MF ≡ δkk′ n̄kσ

(all other expectation values vanishing).

a)

Show that under this mean-field assumption, the interaction part of the Hamiltonian is replaced
by

Hint ' HMF
int = U

∑
k

∑
σσ′

a†kσakσ [n̄σ′ − δσσ′ n̄σ]− ULd

2

∑
σσ′

(1− δσσ′)n̄σn̄σ′

in which

n̄σ ≡
1

Ld

∑
k

〈a†kσakσ〉MF

are again fixed (though unspecified as of yet) numbers.

1



b)

The complete mean-field Hamiltonian is thus

HMF = H0 +HMF
int ≡

∑
k

∑
σ

εMF
kσ a†kσakσ + C({n̄σ})

with

εMF
kσ ≡ εk + U(n̄↑ + n̄↓ − n̄σ) = εk + Un̄−σ, C({n̄σ}) ≡ −

ULd

2

∑
σσ′

(1− δσσ′)n̄σn̄σ′

Since this Hamiltonian is now bilinear in the a†, a operators, everything can be computed exactly.
Write down the coherent state path integral representation for the partition function ZMF of the
mean-field theory, introducing separate chemical potentials µσ for up and down spins, and show
that the mean-field free energy can be written

FMF = −T lnZMF = −T
∑
k

∑
n

∑
σ

ln
[
β(−iωn + ξMF

kσ )
]

+ C({n̄σ})

in which ξMF
kσ = εMF

kσ − µσ.

c)

So far, we have assumed that the mean-field parameters n̄σ were fixed, but we didn’t specify to
which value. This is done by requiring self-consistency of the mean-field treatment. Using the
relations n̄σ = − 1

Ld
∂
∂µσ
FMF , show that (by performing the Matsubara summation using one of

the ‘Useful formulas’) we need to require

n̄σ =
1

Ld

∑
k

nF (εMF
kσ )

d)

Specialize now to the three-dimensional case at zero temperature, assume that εk = ~2k2

2m , go to

the infinite-size limit (so that 1
L3

∑
k(...) →

∫
d3k
(2π)3 (...)), and take the two chemical potentials to

be equal µσ ≡ µ. Show that

n̄σ =
1

6π2
k3Fσ

where the (spin-dependent) Fermi momenta are given by ~2

2mk
2
Fσ + Un̄−σ = µ.

e)

Defining the parameters

n̄ ≡ n̄↑ + n̄↓, ζ =
n̄↑ − n̄↓
n̄↑ + n̄↓

, γ =
2mUn̄1/3

(3π2)2/3~2

(note that we must have 0 ≤ ζ ≤ 1), show that the self-consistency conditions can be rewritten
(most easily by subtracting the two chemical potentials from each other)

γ =
1

ζ

[
(1 + ζ)2/3 − (1− ζ)2/3

]
.

Discuss what happens as a function of the effective interaction parameter γ (hint: look at the
left-hand side function of ζ, and find the limits when ζ → 0 and ζ → 1). What kind of magnetic
state exists for γ < 4/3, 4/3 < γ < 22/3 and γ > 22/3? Can you explain this physically?
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