Statistical Physics \& Condensed Matter Theory I: Exercise

Heisenberg chain with next-nearest-neighbour coupling: Solution

a)

For $J_{1} \gg J_{2}$, the classical ground state is simply given by a fully-aligned spin configuration. The quantum ground states are in this case simply the same as the classical ones. The direction of this alignment is not important, and there is thus a degeneracy corresponding to uniformly rotating all spins. The existence of this symmetry leads to the existence of one type of low-energy spin wave modes.

For $J_{2} \gg J_{1}$, an interesting situation occurs: spins on odd lattice sites tend to order antiferromagnetically with one another, and so do spins on even lattice sites. These two orderings are independent, and there are thus two distinct symmetries: uniform rotations of odd/even lattice site spins. Note that the J_{1} term does not lift the degeneracy (to first order) associated to rotating e.g. even-site spins for a given odd-site spin antiferromagnetic order.
b)

Holstein-Primakoff: keep only $S_{j}^{-}=\sqrt{2 S} a_{j}^{\dagger}, S_{j}^{+}=\sqrt{2 S} a_{j}$:

$$
\begin{array}{r}
S_{j} \cdot S_{j+1}=\frac{1}{2}\left(S_{j}^{+} S_{j+1}^{-}+S_{j}^{-} S_{j+1}^{+}\right)+S_{j}^{z} S_{j+1}^{z} \\
=S\left(a_{j} a_{j+1}^{\dagger}+a_{j}^{\dagger} a_{j+1}\right)+\left(S-a_{j}^{\dagger} a_{j}\right)\left(S-a_{j+1}^{\dagger} a_{j+1}\right)+\mathcal{O}\left(S^{0}\right) \\
=S^{2}-S\left(a_{j+1}^{\dagger}-a_{j}^{\dagger}\right)\left(a_{j+1}-a_{j}\right)+\mathcal{O}\left(S^{0}\right)
\end{array}
$$

The calculation is identical for $S_{j} \cdot S_{j+2}$, so the effective bosonic theory is
$H=-N S^{2}\left(J_{1}-J_{2}\right)+S \sum_{j}\left[J_{1}\left(a_{j+1}^{\dagger}-a_{j}^{\dagger}\right)\left(a_{j+1}-a_{j}\right)-J_{2}\left(a_{j+2}^{\dagger}-a_{j}^{\dagger}\right)\left(a_{j+2}-a_{j}\right)\right]+\mathcal{O}\left(S^{0}\right)$
c)

By Fourier transformation, we have e.g. $\sum_{j}\left(a_{j+1}^{\dagger}-a_{j}^{\dagger}\right)\left(a_{j+1}-a_{j}\right)=\sum_{k}\left|e^{i k}-1\right|^{2} a_{k}^{\dagger} a_{k}$. Since $\left|e^{i k}-1\right|^{2}=4 \sin ^{2} \frac{k}{2}$, we can write

$$
\begin{array}{r}
H=-N S^{2}\left(J_{1}-J_{2}\right)+S \sum_{k} \omega_{k} a_{k}^{\dagger} a_{k}+\mathcal{O}\left(S^{0}\right) \\
\omega_{k}=4 J_{1} \sin ^{2} \frac{k}{2}-4 J_{2} \sin ^{2} k
\end{array}
$$

Using the identity $\sin 2 a=2 \sin a \cos a$, the spin-wave dispersion relation can be rewritten

$$
\omega_{k}=4 J_{1} \sin ^{2} \frac{k}{2}\left(1-\frac{4 J_{2}}{J_{1}} \cos ^{2} \frac{k}{2}\right) .
$$

If $J_{2}>J_{1} / 4$, there exists a region in k around $k=0$ for which $\omega_{k}<0$. Therefore, it would be energetically advantageous to create as many of these negative-energy excitations as possible to minimize the total energy, so the system would be unstable. We can thus have some faith in this calculation only for $J_{2}<J_{1} / 4$.

