Statistical Physics \& Condensed Matter Theory I: Exercise

The Jaynes-Cummings model: Solution

a)

The only nontrivial commutators are

$$
\left[H_{J C}, \hat{N}\right]=\frac{\Omega}{2}\left[a \sigma^{+}+a^{\dagger} \sigma^{-}, a^{\dagger} a+\frac{1}{2} \sigma^{z}\right]
$$

Explicitly,

$$
\begin{gathered}
{\left[a \sigma^{+}, a^{\dagger} a\right]=\left[a, a^{\dagger}\right] a \sigma^{+}=a \sigma^{+}, \quad\left[a^{\dagger} \sigma^{-}, a^{\dagger} a\right]=a^{\dagger}\left[a^{\dagger}, a\right] \sigma^{-}=-a^{\dagger} \sigma^{-}} \\
{\left[a \sigma^{+}, \sigma^{z}\right]=-2 a \sigma^{+}, \quad\left[a^{\dagger} \sigma^{-}, \sigma^{z}\right]=2 a^{\dagger} \sigma^{-}}
\end{gathered}
$$

Since these all add to zero, we indeed have $\left[H_{J C}, \hat{N}\right]=0$.
b)

Explicitly, we have

$$
\sigma^{z}|n, \sigma\rangle=\sigma|n, \sigma\rangle, \quad a^{\dagger} a|n, \sigma\rangle=n|n, \sigma\rangle, \quad \sigma= \pm 1(\uparrow, \downarrow)
$$

Since $\sigma^{+}|n, \uparrow\rangle=0=\sigma^{-}|n, \downarrow\rangle$, the only other nonzero matrix elements are

$$
a \sigma^{+}|n, \downarrow\rangle=\sqrt{n}|n-1, \uparrow\rangle, \quad a^{\dagger} \sigma^{-}|n-1, \uparrow\rangle=\sqrt{n}|n, \downarrow\rangle
$$

The action of the Hamiltonian on the two basis states is thus straightforwardly written as

$$
\begin{aligned}
& H|n-1, \uparrow\rangle=\left[\frac{\epsilon}{2}+\omega(n-1)\right]|n-1, \uparrow\rangle+\frac{\Omega \sqrt{n}}{2}|n, \downarrow\rangle, \\
& H|n, \downarrow\rangle=\left[-\frac{\epsilon}{2}+\omega n\right]|n, \downarrow\rangle+\frac{\Omega \sqrt{n}}{2}|n-1, \uparrow\rangle
\end{aligned}
$$

giving

$$
H_{J C}^{(n)}=\left(\begin{array}{cc}
\frac{\epsilon}{2}+\omega(n-1) & \frac{\Omega}{2} \sqrt{n} \\
\frac{\Omega}{2} \sqrt{n} & -\frac{\epsilon}{2}+\omega n
\end{array}\right)
$$

which gives the required form when substituting for the detuning.
c)

The Bogoliubov form is here

$$
U=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right), \quad \tan 2 \theta=\frac{\Omega \sqrt{n}}{\delta}, \quad U H_{J C}^{(n)} U^{\dagger}=\frac{1}{2}\left(\Omega^{2} n+\delta^{2}\right)^{1 / 2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The two eigenstates are

$$
\begin{aligned}
& U\binom{1}{0}=\cos \theta|n-1, \uparrow\rangle+\sin \theta|n, \downarrow\rangle \equiv|+\rangle, \\
& U\binom{0}{1}=\sin \theta|n-1, \uparrow\rangle-\cos \theta|n, \downarrow\rangle \equiv|-\rangle,
\end{aligned}
$$

their energies being

$$
H_{J C}^{(n)}| \pm\rangle=\left[\omega\left(n-\frac{1}{2}\right) \pm \frac{1}{2}\left(\Omega^{2} n+\delta^{2}\right)^{1 / 2}\right]| \pm\rangle \equiv E_{ \pm}| \pm\rangle
$$

d) Rabi oscillations

By inspection, knowing that $\sin ^{2} \theta+\cos ^{2} \theta=1$, we see that the initial state can be written as

$$
|\psi(t=0)\rangle=|n, \downarrow\rangle=\sin \theta|+\rangle-\cos \theta|-\rangle .
$$

The time-dependent wavefunction is then

$$
|\psi(t)\rangle=e^{-i H_{J C}^{(n)} t}|\psi(t=0)\rangle=e^{-i E_{+} t} \sin \theta|+\rangle-e^{-i E_{-} t} \cos \theta|-\rangle
$$

The propability $P_{\text {exc }}(t)$ of finding the system in the excited state $|n-1, \uparrow\rangle$ is thus

$$
P_{e x c}(t)=|\langle n-1, \uparrow \mid \psi(t)\rangle|^{2} .
$$

This can be calculated using the fact that $|n-1, \uparrow\rangle=\cos \theta|+\rangle+\sin \theta|-\rangle$ and that $| \pm\rangle$ are by construction orthonormal:

$$
\begin{aligned}
& \langle n-1, \uparrow \mid \psi(t)\rangle=(\cos \theta\langle+|+\sin \theta\langle-|)\left(e^{-i E_{+} t} \sin \theta|+\rangle-e^{-i E_{-} t} \cos \theta|-\rangle\right) \\
= & \cos \theta \sin \theta\left(e^{-i E_{+} t}-e^{-i E_{-} t}\right)=-i \sin 2 \theta e^{-i \omega(n-1 / 2) t} \sin \left[\frac{1}{2}\left(\Omega^{2} n+\delta^{2}\right)^{1 / 2} t\right] .
\end{aligned}
$$

We thus get

$$
P_{e x c}(t)=\sin ^{2} 2 \theta \sin ^{2}\left[\frac{1}{2}\left(\Omega^{2} n+\delta^{2}\right)^{1 / 2} t\right]
$$

Using

$$
\sin ^{2} 2 \theta=\tan ^{2} 2 \theta * \cos ^{2} 2 \theta=\frac{\tan ^{2} 2 \theta}{1+\tan ^{2} 2 \theta}=\frac{\Omega^{2} n}{\Omega^{2} n+\delta^{2}}
$$

and the identity $\sin ^{2} 2 \theta=\frac{1}{2}(1-\cos 2 \theta)$ gives the required form

$$
P_{e x c}(t)=\frac{1}{2}\left(1-\cos \omega_{R} t\right) \frac{\Omega^{2} n}{\Omega^{2} n+\delta^{2}}
$$

displaying Rabi oscillations at frequency

$$
\omega_{R}=\left(\Omega^{2} n+\delta^{2}\right)^{1 / 2}
$$

e) Coherent initial state

Using the formulas for coherent states, we have that

$$
\langle 0, \downarrow| e^{\lambda^{*} a} e^{\lambda a^{\dagger}}|0, \downarrow\rangle=e^{|\lambda|^{2}}\langle 0, \downarrow \mid 0, \downarrow\rangle=e^{|\lambda|^{2}}
$$

so $\mathcal{N}=e^{-|\lambda|^{2} / 2}$. Setting the detuning to zero, the time-dependent wavefunction becomes

$$
|\psi(t)\rangle=e^{-i H_{J C} t}|\psi(t=0)\rangle=e^{-i H_{J C} t} e^{-\frac{|\lambda|^{2}}{2}} \sum_{n=0}^{\infty} \frac{\lambda^{n}}{\sqrt{n!}}|n, \downarrow\rangle=e^{-\frac{|\lambda|^{2}}{2}} \sum_{n=0}^{\infty} \frac{\lambda^{n}}{\sqrt{n!}}\left(e^{-i H_{J C} t}|n, \downarrow\rangle\right)
$$

The last parenthesis is precisely the time-dependent wavefunction which we used in the previous subproblem. The required time-dependent probability is thus

$$
\sum_{n=0}^{\infty}|\langle n, \uparrow \mid \psi(t)\rangle|^{2}=e^{-|\lambda|^{2}} \frac{1}{2} \sum_{n=0}^{\infty} \frac{|\lambda|^{2 n}}{n!}(1-\cos (\Omega \sqrt{n} t))=\frac{1}{2}-\frac{1}{2} e^{-|\lambda|^{2}} \sum_{n=0}^{\infty} \frac{|\lambda|^{2 n}}{n!} \cos (\Omega \sqrt{n} t)
$$

f)* Collapse and revival

The sum contains the factor

$$
\frac{|\lambda|^{2 n}}{n!}=e^{2 n \ln |\lambda|-\ln n!} \simeq e^{2 n \ln |\lambda|-n \ln n+n} \frac{1}{\sqrt{2 \pi n}}
$$

where we have assumed $n \gg 1$. The argument in the exponential has a peak at a value n_{p} such that $2 \ln |\lambda|-\ln n_{p}=0 \Rightarrow n_{p}=|\lambda|^{2}$. Expanding the function $f(n) \equiv 2 n \ln |\lambda|-n \ln n+n$ to quadratic order around this point yields

$$
f(n)=f\left(n_{p}\right)+\frac{1}{2 n_{p}^{2}}\left(n-n_{p}\right)^{2}+\ldots=|\lambda|^{2}+\frac{1}{2|\lambda|^{2}}\left(n-|\lambda|^{2}\right)^{2}+\ldots
$$

Rewriting the sum in terms of a new symbol m with $n=|\lambda|^{2}+m, m$ running from $-|\lambda|^{2}$ to ∞ (we can replace the lower bound by $-\infty$ since the summand is negligible for large $|m|$), we get the required

$$
P_{e x c}(t) \simeq \frac{1}{2}-\frac{1}{2 \sqrt{2 \pi|\lambda|^{2}}} \operatorname{Re}\left(\sum_{m=-\infty}^{\infty} e^{-\frac{m^{2}}{2|\lambda|^{2}}+i \Omega t \sqrt{|\lambda|^{2}+m}}\right)
$$

The Gaussian form shows us that we only really need to look at contributions from terms with $m \lesssim|\lambda|$. For large $|\lambda|^{2}$, we can write $\sqrt{|\lambda|^{2}+m} \simeq|\lambda|+\frac{m}{2|\lambda|}$. The terms around the peak thus have a time dependence of the form $e^{i \Omega\left[|\lambda|+\frac{m}{2|\lambda|}\right] t} \equiv e^{i \Omega_{m} t}$. These thus oscillate with a frequency $\sim \Omega|\lambda|$, in other words the time scale for oscillations is $T_{o s c} \simeq \frac{1}{\Omega \mid \lambda \lambda}$. Thinking of the sum of terms with $|m|<|\lambda|$, we can see that the phases (which are all the same at $t=0$) of the terms within this restricted sum, get uniformly distributed over the range 0 to 2π (and thus more or less average out to zero, representing decay of the oscillations) in a time $T_{\text {dec }}$ such that $T_{\text {dec }}\left(\Omega_{|\lambda|}-\Omega_{0}\right) \simeq 2 \pi$, in other words (not caring about constants of order 1) $T_{\text {dec }} \simeq 1 / \Omega$. These oscillations will however all come in phase together again at a time $T_{\text {rev }}$ such that $T_{\text {rev }}\left(\Omega_{m+1}-\Omega_{m}\right) \simeq 1$, namely $T_{\text {rev }} \simeq|\lambda| / \Omega$.

