
Statistical Physics & Condensed Matter Theory I:

Exercise

Melting and the Lindemann criterion

You all know that a given crystal will eventually melt upon heating, because of the thermal
fluctuations in the positions of the atoms on the lattice. In 1910 (before the advent of quan-
tum mechanics), Lindemann formulated a criterion for melting, based on looking at the thermal
fluctuations of atomic positions. His criterion reads

∆x2

a2
< cL, ∆x2 ≡ 〈x2〉 − 〈x〉2

where x is the variable representing the position of an atom, ∆x2 is its mean-square fluctuation, a
is the lattice spacing, and cL is a numerical constant, whose value we can expect to be cL ' 0.11.

We however know that quantum fluctuations are present, even at zero temperature. Can
quantum mechanics thus melt crystals?

First guess

Let us first look at a single atom. Taking x̂ to be its position (deviation from equilibrium) and
p̂ to be its momentum operator (with the usual canonical commutation relations: [x̂, p̂] = i~), we
approximate its Hamiltonian as a simple Harmonic oscillator,

Ĥ =
p̂2

2m
+
mω2

2
x̂2.

Show that the Lindemann criterion then reads

~
2mωa2

< cL.

Linear chain of atoms

The calculation using an isolated atom is not very credible, since we have neglected all the neigh-
bours (i.e. the crystal itself). A much better starting point is our theory of the (quantum)
harmonic chain of N atoms with mean interatom spacing a. This was described in terms of vari-
ables Φ̂I representing the deviation of the Ith atom from its equilibrium position x0I = Ia. The
Hamiltonian is

H =

N∑
I=1

Π̂2
I

2m
+
ks
2

(Φ̂I+1 − Φ̂I)
2

where the position (deviation) Φ̂I and momentum Π̂I operators obey the canonical commutation
relations [

Φ̂I , Π̂I′

]
= i~δII′

1This Lindemann constant can be pictured as follows: if the root-mean-square fluctuations in the position are
about one-third of the interatomic distance, the crystal melts. You can thus expect that cL ' (1/3)2 ∼ 0.1.
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and we impose periodic boundary conditions Φ̂I+N = Φ̂I (similarly for ΠI).
Using the Fourier transforms

Φ̂I =
1√
N

∑
p

eipIaΦ̂p, Φ̂p =
1√
N

∑
I

e−ipIaΦ̂I ,

Π̂I =
1√
N

∑
p

e−ipIaΠ̂p, Π̂p =
1√
N

∑
I

eipIaΠ̂I ,

with momenta p = 2π
Nan, n = −N2 + 1, ..., N2 (the canonical commutation relations between mo-

mentum modes are then
[
Φ̂p, Π̂p′

]
= i~δpp′), show that the Hamiltonian can be rewritten

H =
∑
p

Π̂pΠ̂−p
2m

+
mω2

p

2
Φ̂pΦ̂−p, with ωp = 2

√
ks
m
| sin(

pa

2
)|.

Diagonalization using ladder operators

Define now the ladder operators

ap ≡
√
mωp
2~

(
Φ̂p +

i

mωp
Π̂−p

)
, a†p ≡

√
mωp
2~

(
Φ̂−p −

i

mωp
Π̂p

)
.

Show that these obey the canonical commutation relations

[ap, a
†
p′ ] = δpp′ , [ap, ap′ ] = 0, [a†p, a

†
p′ ] = 0

and that the Hamiltonian can be rewritten as

H =
∑
p

~ωp(a†pap +
1

2
).

Mean square deviations

Consider now a particular atom of the chain, labeled by I. Show that the mean square deviation
of Φ̂I in the ground state of the chain is given by

∆Φ2
I ≡ 〈0|Φ̂2

I |0〉 − 〈0|Φ̂I |0〉2 =
1

N

∑
p

~
2mωp

.

Going to the infinite-length limit N → ∞ and using 1
N

∑
p(...) → a

∫ π/a
−π/a

dp
2π , argue that in the

one-dimensional case, it is impossible to satisfy the Lindemann criterion.

Higher dimensions

Extend your reasoning to the arbitrary-dimensional case (more precisely: give the formula for the
mean square deviation). According to the Lindemann criterion, is a crystal at zero temperature
possible at all in 2d? In 3d?
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