
Statistical Physics & Condensed Matter Theory I:

Exercise

Tunneling spectroscopy

Consider two systems described respectively by Hamiltonians H1 and H2. Each system is described
by second-quantized fermionic operators ai,k (i = 1, 2, k being e.g. a momentum-like index)
obeying the anti-commutation relations{

ai,k, a
†
i′,k′

}
= δii′δkk′ .

We now bring the systems in close contact with each other. Tunneling of particles between
one system and the other then becomes possible. This is represented by the perturbation term

Ht =
∑
kk′

(
tkk′a

†
1,ka2,k′ + t∗kk′a

†
2,k′a1,k

)
≡ T + T †.

Our expectation is that if we were to put both sides at different chemical potentials (namely: at
different voltages), there would be a current flowing from one side to the other because of the
tunneling term. This current can be defined for example as the rate of change of the charge in
system 2:

I =
d

dt
N2, Ni =

∑
k

a†i,kai,k.

a) Using dA/dt = i[H,A], show that

I = J + J†, J ≡ i
∑
kk′

tkk′a
†
1,ka2,k′ .

b) We now apply linear response theory. According to the Kubo formula, the current through
the junction as a function of time is given by

Ī(t) =

∫ ∞
−∞

dt′ CI,Ht

ret (t− t′), CI,Ht

ret (t− t′) = −iθ(t− t′)〈
[
II(t), HI

t (t′)
]
〉

in which the expectation value is the thermal, grand-canonical expectation value using the un-
perturbed theory. Assuming that correlations are purely diagonal in momentum index, and using
Wick’s theorem, show that this can be written in terms of the ‘lesser’ and ‘greater’ functions as

Ī(t) = 2 Re

∫ 0

−∞
dt′
∑
k1k2

|tk1k2 |2
(
C>β,µ1;k1

(t′)C<β,µ2;k2
(−t′)− C<β,µ1;k1

(t′)C>β,µ2;k2
(−t′)

)
(note that this result becomes time independent: we are thus calculating a static current, which
makes sense because our perturbation is also time-independent).
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c) Fourier transforming the correlators according to

C(t) =

∫ ∞
−∞

dω

2π
e−iωtC(ω),

making use of the Dirac identity in the form (P means the principal part under the integral sign)∫ ∞
0

dteiωt = πδ(ω) + iP
1

ω
,

and using the relations between the greater/lesser functions and the spectral function

C>β,µ;k(ω) = −i(1− nF (ω − µ;β))Aβ,µ;k(ω), C<β,µ;k(ω) = inF (ω − µ;β)Aβ,µ;k(ω),

show that the current is expressed as

Ī =

∫ ∞
−∞

dω

2π

∑
k1k2

|tk1k2 |2 (nF (ω − µ2;β)− nF (ω − µ1;β))Aβ,µ1;k1(ω)Aβ,µ2;k2(ω).

What happens to the current if we set µ1 = µ2? Interpret this result.

d) Let us now assume that system 1 is being ‘probed’ by system 2 (the latter is then e.g. a
scanning tunneling tip). We make the assumption that this tip is metallic, so it’s density of states
is more or less constant, and that we can approximate∑

k2

|tk1k2 |2Aβ,µ2;k2(ω) ' 2πtk1ν2

as being ω-independent (tk1 is some real positive function of k1; ν2 is the density of states in the
probe). Interpreting the chemical potential difference µ2 − µ1 = V as a potential difference, show
that the zero-temperature limit of the differential current (derivative of the current with respect
to V at fixed µ1) is a direct measure of the spectral function,

lim
β→∞

dĪ

dV
= ν2

∑
k1

tk1Aβ,µ1;k1(µ1 + V ).

This is a fundamental equation in the multi-faceted field of spectroscopy.
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