g)

$$
\mathcal{G}_{k n}=\frac{\int \mathcal{D}(\bar{\psi}, \psi) e^{-S_{0}[\bar{\psi}, \psi]}\left(1-S_{\text {int }}[\bar{\psi}, \psi]+\ldots\right) \bar{\psi}_{k n \sigma} \psi_{k n \sigma}}{\int \mathcal{D}(\bar{\psi}, \psi) e^{-S_{0}[\bar{\psi}, \psi]}\left(1-S_{i n t}[\bar{\psi}, \psi]+\ldots\right)}
$$

Rewrite denominator:

$$
" \text { Denominator } "=\mathcal{Z}_{0}\left(1-\left\langle S_{\text {int }}\right\rangle_{0}+\ldots\right)
$$

Using that $1 /(1-x)=1+x+\mathcal{O}\left(x^{2}\right)$ for $|x|<1$,

$$
\begin{aligned}
\mathcal{G}_{k n} & =\frac{1}{\mathcal{Z}_{0}} \int \mathcal{D}(\bar{\psi}, \psi)\left[1-S_{i n t}[\bar{\psi}, \psi]+\ldots\right] \bar{\psi}_{k n \sigma} \psi_{k n \sigma}\left[1+S_{i n t}[\bar{\psi}, \psi]+\mathcal{O}\left(U^{2}\right)\right] \\
& =\mathcal{G}_{k n}^{(0)}-\left(\left\langle\bar{\psi}_{k n \sigma} \psi_{k n \sigma} S_{i n t}[\bar{\psi}, \psi]\right\rangle_{0}-\mathcal{G}_{k n}^{(0)}\left\langle S_{i n t}\right\rangle_{0}\right)+\mathcal{O}\left(U^{2}\right)
\end{aligned}
$$

The term within brackets is the first order correction $\mathcal{G}_{k n}^{(1)}$ to the free Green's function; it amounts to taking the connected part of corresponding diagrams, since we have subtracted the disconnected part $\mathcal{G}_{k n}^{(0)}\left\langle S_{i n t}\right\rangle_{0}$. Doing so, we see that for fixed spin index σ only a single diagram remains. E.g. if σ is 'up', then we have to attach $\bar{\psi}_{k n \sigma}$ to the leg labelled by k, n, and 'up', while $\psi_{k n \sigma}$ has to be attached to the leg labelled by $k+q, n+m$ and 'up'. The only way for this diagram to give a non-zero contribution is when $q=m=0$. The remaining sum over k^{\prime} and n^{\prime} remains, and we are left with

$$
\begin{aligned}
\mathcal{G}_{k n}^{(1)} & =\frac{U T}{N}\left(\mathcal{G}_{k n}^{(0)}\right)^{2} \sum_{k^{\prime}, n^{\prime}} \mathcal{G}_{k^{\prime} n^{\prime}}^{(0)} \\
& =\frac{U}{N}\left(\frac{1}{i \omega_{n}-\xi_{k}}\right)^{2} \sum_{k^{\prime}} n_{F}\left(\xi_{k^{\prime}}\right) \\
& =U\left(\frac{1}{i \omega_{n}-\xi_{k}}\right)^{2} \frac{k_{F}}{\pi}
\end{aligned}
$$

where we performed the Matsubara sum when going to the second line, and we took the limit $N, \beta \rightarrow \infty$ to get to the last line. (Note: when σ is 'down', we have to attach to the primed variables, and we get a sum over k and n, which leads to the same result.)

Hence, the interacting Green's is given by

$$
\begin{aligned}
\mathcal{G}_{k n} & =\mathcal{G}_{k n}^{(0)}+\mathcal{G}_{k n}^{(1)}+\mathcal{O}\left(U^{2}\right) \\
& =\frac{1}{i \omega_{n}-\xi_{k}}+\left(\frac{1}{i \omega_{n}-\xi_{k}}\right)^{2} \frac{U k_{F}}{\pi}+\mathcal{O}\left(U^{2}\right) \\
& =\frac{1}{i \omega_{n}-\xi_{k}}\left[1+\frac{U k_{F}}{\pi\left(i \omega_{n}-\xi_{k}\right)}\right]+\mathcal{O}\left(U^{2}\right) \\
& =\frac{1}{i \omega_{n}-\xi_{k}} \frac{1}{1-\frac{U k_{F}}{\pi\left(i \omega_{n}-\xi_{k}\right)}}+\mathcal{O}\left(U^{2}\right) \\
& =\frac{1}{i \omega_{n}-\xi_{k}-\Sigma_{k, n}}+\mathcal{O}\left(U^{2}\right)
\end{aligned}
$$

where $\Sigma_{k, n}=\frac{U k_{F}}{\pi}$ (NB. The sigma doesn't stand for a summation. Perhaps slightly confusing, but standard notation so we're stuck with it.)
h) In the limit $U \rightarrow-\infty$, assuming an equal amount of spin-up and spin-down electrons, all particles team up to form a composite bosonic particle to minimize the interaction energy. These composite particles fully occupy a single site, so they behave as free hard core bosons (particles obeying bosonic statistics, but cannot be in the same place because each such particle fully occupies an entire site).

