
Statistical Physics and Condensed Matter Theory

I: Final exam

Monday 21 October 2013, 9:00 - 12:00, SP C1.110

• Please write legibly and be explicit in your answers. I cannot give you points for things I
can’t/don’t see !

• Please use separate sheets for each question, and put your name, student number
and study programme on each of them.

• There is a collection of useful formulas at the end, class notes and books are not allowed.

• This exam consists of 3 problems. You should do all of them.

• Problem 3 is identical to the exercise recently given in class.

• Sub-questions marked with ∗ are particularly challenging. Consider solving them only once
you’re finished with the rest.

• The points add up to 105, so you effectively start with 5 points bonus!

1. Spin waves and the Kubo formula (35 pts)

Consider a one-dimensional lattice of N sites, with spin operators Sm defined at each site m =
1, ..., N , with periodic boundary conditions Sm+N ≡ Sm. We are interested in the ferromagnetic
Heisenberg Hamiltonian

H = −J
N∑
j=1

[
1

2

(
S+
j S
−
j+1 + S−j S

+
j+1

)
+ ∆Szj S

z
j+1

]
with J > 0, and in which the anisotropy parameter ∆ is an arbitrary real number (we take it here
to be positive).

a) (5 pts)

Describe (if possible) all classical and quantum ground states of this system, treating the ∆ > 1
and 0 < ∆ < 1 cases separately.

b) (5 pts)

Using the Holstein-Primakoff transformation, write the effective bosonic theory at large S to
leading nontrivial order in 1/S (in other words, keep the order S2 and order S terms but drop the
order 1 terms).
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c) (10 pts)

Obtain the spectrum of the theory to leading nontrivial order in the 1/S expansion. Again for
the case ∆ > 1, what does the spectrum look like when the momentum is close to zero ? Do you
think that this approach also works for ∆ < 1 ? Explain your reasoning.

d) (5 pts)

Let us from now on restrict ourselves to the case ∆ > 1. We shall be interested in the space- and
time-dependent correlations between the spins (in the large S limit). Since the spin operators are
written in terms of bosons, we can build everything in terms of the latter’s correlators. Therefore,
as a first step, for a free bosonic theory H0 =

∑
k εka

†
kak, calculate the retarded correlation

function
Cretk1,k2(t1 − t2) ≡ −iθ(t1 − t2)〈[ak1(t1), a†k2(t2)]〉

in which the operators are in the interaction representation1 a(t) = eiH0tae−iH0t. Hint: it’s easiest
to do it directly (i.e. using operators, so without the field integral); you can calculate the zero-
temperature correlation (i.e. on the ground state), though the correlator turns out not to depend
on which state you’re calculating it on.

e) (5 pts)

Using the Kubo formula (see Useful Formulas), and specializing to zero temperature, calculate
the effect (in linear response) of applying the operator Sxj1 at time t1, on the expectation value of
operator Sxj2 at time t2. Hint: simply consider applying the time-dependent perturbation fδ(t −
t1)Sxj1 (with f representing some very small ‘probing’ amplitude). Remember that Sx = 1

2 (S+ +
S−), and that the ground state is fully polarized. For your information: this and similar
correlations can be used to describe inelastic neutron scattering experiments.

f)∗ (5 pts)

Go back to the derivation of the Hamiltonian for bosons, and keep the order S0 term in the 1/S
expansion. Show that this gives an interaction between the Holstein-Primakoff bosons of the form

Hint =
1

N

∑
k,k′,q

Vk,k′,qa
†
k+qa

†
k′−qak′ak.

Give the explicit form of Vk,k′,q. Considering again ∆ > 1 and small momenta, is this interaction
repulsive or attractive? What does this mean for the stability of the theory at this order in the
1/S expansion?

1... which here is the same as the Heisenberg representation since the perturbation is absent.
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2. The Jaynes-Cummings model (35 pts)

One of the most important recent breakthroughs in physics has been the ability to isolate and
manipulate single atoms2, this being done either in harmonic traps or optical cavities. The cen-
tral model in this field is called the Jaynes-Cummings model, and describes a two-level atom
interacting with the quantized modes of a harmonic oscillator (see the figure). This problem uses
second quantization to extract some interesting physics from this model.

Figure 1: Example setup for the Jaynes-Cummings model. An optical cavity contains quantized
modes of frequency ω. A two-level system (e.g. two internal states of an atom) with energy
splitting ε is coupled to the cavity mode. The two-level system is here pictured in its ground state
|g〉. Absorption of a quantum of the cavity mode promotes it to the excited state |e〉.

The Hamiltonian of the model is

HJC =
ε

2
σz + ωa†a+

Ω

2
(aσ+ + a†σ−).

The first term represents the two-level atom, the second represents the cavity mode (a quantum
harmonic oscillator), and the third term is the coupling between these. We have represented the
two-level atom as a pseudo-spin (denoting the ground state and excited state of the two-level
system respectively as |g〉 and |e〉)

|g〉 ≡ | ↓〉, |e〉 ≡ | ↑〉,

with operators
σz = |e〉〈e| − |g〉〈g|, σ+ = |e〉〈g|, σ− = |g〉〈e|.

The Ω term means that the two-level atom can go from the ground to the excited state by absorbing
one quantum of the cavity mode, and conversely relax from the excited to the ground state by

emitting a quantum of the cavity mode. The set of states |n, ↑ (↓)〉 = (a†)n√
n!
|0, ↑ (↓)〉, n ∈ N forms

a basis for the Hilbert space.

a) (5 pts)

Show that the quantity

N̂ = a†a+
1

2
σz

commutes with the Jaynes-Cummings Hamiltonian, and is thus a conserved quantity.

b) (10 pts)

Let us now work in a fixed subspace of the Hilbert space in which the operator N̂ takes on a
definite value n. This subspace is two-dimensional, and we write its two basis states as

|n− 1, ↑〉 ≡
(

1
0

)
, |n, ↓〉 ≡

(
0
1

)
.

2The 2012 Nobel Prize in Physics was awarded to Serge Haroche and David Wineland ‘for ground-breaking
experimental methods that enable measuring and manipulation of individual quantum systems’.
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Show that when projected onto this subspace, the Hamiltonian is represented as

H
(n)
JC =

(
〈n− 1, ↑ |HJC |n− 1, ↑〉 〈n− 1, ↑ |HJC |n, ↓〉
〈n, ↓ |HJC |n− 1, ↑〉 〈n, ↓ |HJC |n, ↓〉

)
= ω(n− 1

2
)1 +

1

2

(
δ Ω

√
n

Ω
√
n −δ

)
,

the first term being proportional to the unit matrix (and thus representing a trivial constant
energy shift for given n), and the parameter δ ≡ ε− ω being called the detuning.

c) (5 pts)

Diagonalize this using a Bogoliubov transformation (you directly use the Useful Formulas below,
without rederivation). Give the explicit form of the two eigenstates together with their energy.

d) Rabi oscillations (5 pts)

Consider now an initial state
|ψ(t = 0)〉 = |n, ↓〉.

Show that the propability Pexc(t) of finding the system in the excited state |n − 1, ↑〉 displays
Rabi oscillations at frequency ωR (to be determined) according to the formula

Pexc(t) =
1

2
(1− cosωRt)

Ω2n

Ω2n+ δ2
.

e) Coherent initial state (5 pts)

Let us now consider a more interesting initial state where the bosons are in a coherent state:

|ψ(t = 0)〉 = N eλa
†
|0, ↓〉, λ ∈ C.

Setting the value of N so that the state is normalized, and considering the simplest case of zero
detuning δ = 0, show that the probability of finding the atom in the excited state (i.e. the
two-level system in state ↑, irrespective of the number of quanta in the cavity mode) is given by

Pexc(t) =
1

2
− 1

2
e−|λ|

2
∞∑
n=0

|λ|2n

n!
cos(Ω

√
nt).

f)∗ Collapse and revival (5 pts)

Consider now the case |λ| � 1 (in other words, the cavity mode is very highly occupied). By using
Stirling’s formula ln(n!) = n lnn− n+ ln

√
2πn+O(1/n) (for n� 1), argue that the summand is

sharply peaked around a value np ' |λ|2, and that by expanding around this peak value we can
write the approximate result

Pexc(t) '
1

2
− 1

2
√

2π|λ|2
Re

( ∞∑
m=−∞

e
− m2

2|λ|2
+iΩt
√
|λ|2+m

)
.

By looking at contributions around the peak at m = 0, looking at the set of ‘fast’ oscillations
at frequency Ω|λ|, and considering that the most important contributions come from values of m
such that |m| < |λ| (because others are suppressed by the Gaussian form), argue that there are
three relevant time scales to the problem: a time scale for oscillations, one for decay, and one for
revival, and that these are respectively given by

Tosc '
1

Ω|λ|
, Tdec '

1

Ω
, Trev '

|λ|
Ω
.

For your information: the revival is a purely quantum effect (it would not exist if the cavity
modes were not quantized), and is observable experimentally in one-atom masers.
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3. Itinerant electrons with interactions: mean-field theory
(35 pts)

We have seen that starting from Hubbard-like models (with on-site Coulomb interaction U > 0),
a Heisenberg model can be obtained by going to the strongly-interacting limit U → ∞ when the
system is half-filled (one electron per site on average).

What happens if U is not that large, and we’re working at generic fillings? Consider a d-
dimensional crystal with electrons interacting with a purely on-site Coulomb interaction U > 0.
In Fourier space, we can write the Hamiltonian as

H = H0 +Hint =
∑
k

∑
σ

εka
†
kσakσ +

U

2Ld

∑
kk′q

∑
σσ′

a†k+qσa
†
k′−qσ′ak′σ′akσ

in which εk is the kinetic energy part.
The interaction term is impossible to handle exactly. We could simply do perturbation theory

in U , but we don’t always want to assume that U is small. The purpose of this exercise is to show
you another way of handling this interaction.

The key is to find a reasonable way of rewriting the interaction term (containing 4 opera-
tors) into terms with 2 operators only (which can then be handled exactly). We thus make the
assumption (‘mean-field’) that we can replace the operator product according to

a†k+qσa
†
k′−qσ′ak′σ′akσ ' a†k+qσakσ〈a

†
k′−qσ′ak′σ′〉MF + a†k′−qσ′ak′σ′〈a†k+qσakσ〉MF

−a†k+qσak′σ′〈a†k′−qσ′akσ〉MF − a†k′−qσ′akσ〈a†k+qσak′σ′〉MF

−〈a†k+qσakσ〉MF 〈a†k′−qσ′ak′σ′〉MF + 〈a†k+qσak′σ′〉MF 〈a†k′−qσ′akσ〉MF

in which we take the ‘mean-field’ expectation values to be given by the (not yet determined)
parameters nkσ according to

〈a†kσak′σ〉MF ≡ δkk′ n̄kσ

(all other expectation values vanishing).

a) (10 pts)

Show that under this mean-field assumption, the interaction part of the Hamiltonian is replaced
by

Hint ' HMF
int = U

∑
k

∑
σσ′

a†kσakσ [n̄σ′ − δσσ′ n̄σ]− ULd

2

∑
σσ′

(1− δσσ′)n̄σn̄σ′

in which

n̄σ ≡
1

Ld

∑
k

〈a†kσakσ〉MF

are again fixed (though unspecified as of yet) numbers.

b) (10 pts)

The complete mean-field Hamiltonian is thus

HMF = H0 +HMF
int ≡

∑
k

∑
σ

εMF
kσ a†kσakσ + C({n̄σ})

with

εMF
kσ ≡ εk + U(n̄↑ + n̄↓ − n̄σ) = εk + Un̄−σ, C({n̄σ}) ≡ −

ULd

2

∑
σσ′

(1− δσσ′)n̄σn̄σ′
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Since this Hamiltonian is now bilinear in the a†, a operators, everything can be computed exactly.
Write down the coherent state path integral representation for the partition function ZMF of the
mean-field theory, introducing separate chemical potentials µσ for up and down spins, and show
that the mean-field free energy can be written

FMF = −T lnZMF = −T
∑
k

∑
n

∑
σ

ln
[
β(−iωn + ξMF

kσ )
]

+ C({n̄σ})

in which ξMF
kσ = εMF

kσ − µσ.

c) (5 pts)

So far, we have assumed that the mean-field parameters n̄σ were fixed, but we didn’t specify to
which value. This is done by requiring self-consistency of the mean-field treatment. Using the
relations n̄σ = − 1

Ld
∂
∂µσ
FMF , show that (by performing the Matsubara summation using one of

the Useful Formulas) we need to require

n̄σ =
1

Ld

∑
k

nF (εMF
kσ )

d) (5 pts)

Specialize now to the three-dimensional case at zero temperature, assume that εk = ~2k2

2m , go to

the infinite-size limit (so that 1
L3

∑
k(...) →

∫
d3k

(2π)3 (...)), and take the two chemical potentials to

be equal µσ ≡ µ. Show that

n̄σ =
1

6π2
k3
Fσ

where the (spin-dependent) Fermi momenta are given by ~2

2mk
2
Fσ + Un̄−σ = µ.

e) (5 pts)

Defining the parameters

n̄ ≡ n̄↑ + n̄↓, ζ =
n̄↑ − n̄↓
n̄↑ + n̄↓

, γ =
2mUn̄1/3

(3π2)2/3~2

(note that we must have 0 ≤ ζ ≤ 1), show that the self-consistency conditions can be rewritten
(most easily by subtracting the two chemical potentials from each other)

γ =
1

ζ

[
(1 + ζ)2/3 − (1− ζ)2/3

]
.

Discuss what happens as a function of the effective interaction parameter γ (hint: look at the
left-hand side function of ζ, and find the limits when ζ → 0 and ζ → 1). What kind of magnetic
state exists for γ < 4/3, 4/3 < γ < 22/3 and γ > 22/3? Can you explain this physically?
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Useful Formulas

Trigonometric and hyperbolic functions

sin(θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2, cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2,

cos2 θ + sin2 θ = 1, sin2 θ =
1

2
(1− cos 2θ), cos2 θ =

1

2
(1 + cos 2θ),

sinh(θ1 + θ2) = sinh θ1 cosh θ2 + cosh θ1 sinh θ2, cosh(θ1 + θ2) = cosh θ1 cosh θ2 + sinh θ1 sinh θ2,

cosh2 θ − sinh2 θ = 1, sinh2 θ =
1

2
(cosh 2θ − 1), cosh2 θ =

1

2
(cosh 2θ + 1).

Series expansions

ex =

∞∑
n=0

xn

n!
, cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
, sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
,

(1 + x)α =

∞∑
n=0

(
α
n

)
xn = 1 + αx+

α(α− 1)

2
x2 + ..., ln(1 + x) =

∞∑
n=1

(−1)n+1x
n

n

Bosonic occupation number states

[b, b†] = 1, |n〉 =
1√
n!

(b†)n|0〉, b†|n〉 =
√
n+ 1|n+ 1〉, b|n〉 =

√
n|n− 1〉.

Pauli spin matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, σ± =

1

2
(σx ± iσy).

Spins on a lattice

SU(2) spin algebra (here, i, j, k = x, y, z and m,n denote lattice sites).[
Ŝim, Ŝ

j
n

]
= iδmnε

ijkŜkn.

Spin raising and lowering operators: Ŝ±m = Ŝxm ± iŜym with[
Ŝzm, Ŝ

±
n

]
= ±δnmŜ±m,

[
Ŝ+
m, Ŝ

−
n

]
= 2δnmŜ

z
m.

For the S = 1/2 case, one can use the representation Si = σi/2, i = x, y, z.

Holstein-Primakoff transformation

Ŝ−m = a†m(2S − a†mam)1/2, Ŝ+
m = (2S − a†mam)1/2am, Ŝzm = S − a†mam

where am, a†m are bosonic operators obeying the canonical algebra [am, a
†
n] = δmn (other commu-

tators vanish).

Fourier transformation

ak =
1√
N

N∑
m=1

eikmam, am =
1√
N

∑
k∈BZ

e−ikmak, [ak, a
†
k′ ]ζ =

{
aka
†
k′ − a

†
k′ak, bosons

aka
†
k′ + a†k′ak, fermions

= δkk′
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Bogoliubov transformation

The matrix (
a b
b −a

)
(here for a, b ∈ R) can be diagonalized by the unitary transformation

UHU† =

(
ε 0
0 −ε

)
, U =

(
cos θ sin θ
sin θ − cos θ

)
where tan 2θ = b

a and ε = (a2 + b2)1/2.

Coherent states (bosons: ζ = 1, fermions: ζ = −1)

|φ〉 ≡ exp

[
ζ
∑
i

φia
†
i

]
|0〉

ai|φ〉 = φi|φ〉, a†i |φ〉 = ζ∂φi |φ〉, 〈φ|a†i = 〈φ|φ̄i, 〈φ|ai = ∂φ̄i〈φ| ∀i.

The norm of a coherent state is

〈φ|φ〉 = exp

[∑
i

φ̄iφi

]
.

Coherent states form an (over)complete set of states:∫ ∏
i

d(φ̄i, φi)e
−

∑
i φ̄iφi |φ〉〈φ| = 1F

with 1F the identity in Fock space. The measures are d(φ̄i, φi) = dφ̄idφi
π for bosons, d(φ̄i, φi) =

dφ̄idφi for fermions.

Campbell-Baker-Hausdorff formula

The general identity called the Campbell-Baker-Hausdorff formula reads:

e−BAeB =

∞∑
n=0

1

n!
[A,B]n, where [A,B]n = [[A,B]n−1, B], [A,B]0 ≡ A.

This can be specialized to some simpler particular cases. Let A and B be two quantum operators
such that [A,B] commutes with A and B. Then, the following identities hold:

eA+B = eAeBe−
1
2 [A,B], [A, eλB ] = λ[A,B]eλB .

Another useful one is:

if [A,B] = DB and [A,D] = 0 = [B,D], then f(A)B = Bf(A+D).

This then implies (under the same conditions) that

eABe−A = BeD.

Grassmann variables

∀i, j, ηiηj = −ηjηi,
∫
dηi = 0,

∫
dηiηi = 1.
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Coherent state path integral representation of the partition function

For a second-quantized Hamiltonian of the form

Ĥ(a†, a) =
∑
ij

hija
†
iaj +

∑
ijkl

Vijkla
†
ia
†
jakal,

the partition function is

Z =

∫
D(ψ̄, ψ)e−S[ψ̄,ψ].

Here, we work directly in the Matsubara frequency (usually labeled by the index n, whose value
runs over all integers) representation. The measure is defined as D(ψ̄, ψ) =

∏
i

∏
n d(ψ̄in, ψin)

and d(ψ̄, ψ) ≡ βdψ̄dψ for fermions and d(ψ̄, ψ) ≡ 1
πβdψ̄dψ for bosons (see next subsection for the

Gaussian integral). The effective action is

S[ψ̄, ψ] =
∑
ij,n

ψ̄in [(−iωn − µ)δij + hij ]ψjn + T
∑

ijkl,{ni}

Vijklψ̄in1 ψ̄jn2ψkn3ψln4δn1+n2,n3+n4 .

Gaussian integration over bosonic/Grassmann variables

By definition, in the frequency representation of the action, we use∫
d(ψ̄, ψ)e−ψ̄εψ = (βε)−ζ

with ζ = +1 for bosons and −1 for fermions.

Wick’s theorem (fermions)

The expectation value of a product of fermionic fields over a noninteracting theory is given by the
sum over all pairings signed by the permutation order. For four fields,

〈ψ̄aψ̄bψcψd〉0 = 〈ψ̄aψd〉0〈ψ̄bψc〉0 − 〈ψ̄aψc〉0〈ψ̄bψd〉0.

The first term is the Hartree term, the second is the Fock term.

Matsubara sums (fermions)

∑
n

ln(β [−iωn + ξ]) = ln
[
1 + e−βξ

]
,

T
∑
n

1

iωn − εa + µ
=

1

eβ(εa−µ) + 1
≡ nF (εa, µ).

Interaction representation

For the HamiltonianH = H0+HI in whichHI represents the ‘interaction’ andH0 the free (exactly-
solvable) model, the interaction picture states and operators are related to the Schrödinger ones
by

|ψI(t)〉 = eiH0t|ψS(t)〉, OI(t) = eiH0tOSe−iH0t.
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Linear response theory: the Kubo formula

For the time-dependent Hamiltonian (in the Schrödinger picture)

H(t) = H0 + F (t)P̂ ,

with initial condition that the system at t→ −∞ is in state |ψo〉, the time-dependent expectation
value of operator O is given in linear response by the Kubo formula

Ō(t) = 〈ψ0|Ô|ψ0〉+

∫ ∞
−∞

dt′CÔ,P̂ret,ψ0
(t− t′)F (t′) +O(F 2)

in terms of the retarded correlation function (computed in state |ψ0〉) between the perturbation
and observable, this retarded function being defined (for a generic state |ψ〉) as

CÔ,P̂ret,ψ(t− t′) ≡ −iθ(t− t′)〈ψ|[ÔI(t), P̂ I(t′)]|ψ〉.
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