
Statistical Physics and Condensed

Matter Theory I: Final exam

Tuesday 21 October 2014, 9:00 - 12:00, REC C0.02

• Please write legibly and be explicit in your answers. I cannot give you points for things I
can’t/don’t see !

• Please use separate sheets for each question, and put your name, student number
and study programme on each of them.

• There is a collection of useful formulas at the end, class notes and books are not allowed.

• This exam consists of 2 problems. You should do both of them.

• Sub-questions marked with ∗ are particularly challenging. Consider solving them only once
you’re finished with the rest.

• Be smart: if you’re stuck on a (sub-)question, don’t lose too much time, you can always
move on to the next one (the questions are formulated in order to make this possible).

• The points add up to 110, so you can drop some (sub) questions without being penalized.

1



1. Spin waves and the Kubo formula (40 pts)

Consider a one-dimensional lattice of N sites, with spin operators Sm defined at each site m =
1, ..., N , with periodic boundary conditions Sm+N ≡ Sm. We are interested in the ferromagnetic
Heisenberg Hamiltonian

H = −J
N∑
j=1

[
1

2

(
S+
j S
−
j+1 + S−j S

+
j+1

)
+ ∆Szj S

z
j+1

]

with J > 0, and in which the anisotropy parameter ∆ is an arbitrary real number (we take it here
to be positive).

a) (5 pts)

Describe (if possible) all classical and quantum ground states of this system, treating the ∆ > 1
and 0 < ∆ < 1 cases separately.

b) (5 pts)

Using the Holstein-Primakoff transformation, write the effective bosonic theory at large S to
leading nontrivial order in 1/S (in other words, keep the order S2 and order S terms but drop the
order 1 terms).

c) (10 pts)

Obtain the spectrum of the theory to leading nontrivial order in the 1/S expansion. Again for
the case ∆ > 1, what does the spectrum look like when the momentum is close to zero ? Do you
think that this approach also works for ∆ < 1 ? Explain your reasoning.

d) (5 pts)

Let us from now on restrict ourselves to the case ∆ > 1. We shall be interested in the space- and
time-dependent correlations between the spins (in the large S limit). Since the spin operators are
written in terms of bosons, we can build everything in terms of the latter’s correlators. Therefore,
as a first step, for a free bosonic theory H0 =

∑
k εka

†
kak, calculate the retarded correlation

function
Cretk1,k2(t1 − t2) ≡ −iθ(t1 − t2)〈[ak1(t1), a†k2(t2)]〉

in which the operators are in the interaction representation1 a(t) = eiH0tae−iH0t. Hint: it’s easiest
to do it directly (i.e. using operators, so without the field integral); you can calculate the zero-
temperature correlation (i.e. on the ground state), though the correlator turns out not to depend
on which state you’re calculating it on.

e) (5 pts)

Using the Kubo formula (see Useful Formulas), and specializing to zero temperature, calculate
the effect (in linear response) of applying the operator Sxj1 at time t1, on the expectation value of
operator Sxj2 at time t2, to leading order in the large S expansion. Hint: simply consider applying
the time-dependent perturbation fδ(t− t1)Sxj1 (with f representing some very small ‘probing’ am-

plitude). Remember that Sx = 1
2 (S+ +S−), and that the ground state is fully polarized. For your

information: this and similar correlations can be used to describe inelastic neutron scattering
experiments.

1... which here is the same as the Heisenberg representation since the perturbation is absent.
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f)∗ (10 pts)

Go back to the derivation of the Hamiltonian for bosons, and keep the order S0 term in the 1/S
expansion. Show that this gives an interaction between the Holstein-Primakoff bosons of the form

Hint =
1

N

∑
k,k′,q

Vk,k′,qa
†
k+qa

†
k′−qak′ak.

Give the explicit form of Vk,k′,q. Considering again ∆ > 1 and small momenta, is this interaction
repulsive or attractive? What does this mean for the stability of the theory at this order in the
1/S expansion?
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2. Conductance through an Anderson impurity (70 pts)

The influence of interactions on electronic transport properties can be observed in many nanos-
tructures, in particular in a so-called quantum dot, namely a spatially isolated island in and out
of which electrons can tunnel. Due to its small size, the quantum dot supports discretely-spaced
energy levels; considering only one of these levels for simplicity, we model the dot with the Hamil-
tonian

Hd =
∑
σ=↑,↓

ξdσd
†
σdσ + Und↑nd↓

in which dσ, d
†
σ are the annihilation/creation operators for a spin-σ electron in the considered

level on the dot (they obey the canonical equal-time anticommutation relations {dσ, d†σ′} = δσσ′),
ξdσ = εdσ − µ is the on-site energy (including chemical potential shift set by a gate voltage),
ndσ ≡ d†σdσ and U is a Hubbard-like repulsive interaction which is counted if the dot is doubly
occupied.

To investigate transport properties through the dot, we put two conducting leads to the left
and right. These leads are described by the Hamiltonians (in which the index k can be thought
of as a momentum-like label)

Hl =
∑
kσ

ξkl
†
kσlkσ, Hr =

∑
kσ

ξkr
†
kσrkσ,

in which lkσ, l
†
kσ are the annihilation/creation operators for fermions in the left lead, which obey

the canonical equal-time anticommutation relations {lkσ, l†k′σ′} = δkk′δσσ′ , and rkσ, r
†
kσ are the

corresponding ones for the right lead. For simplicity, we have taken the set of one-body energies
ξlk, ξrk to be the same in the left and right leads ξlk = ξrk ≡ ξk, and are neglecting any interaction
effects in the leads.

Since they are in close proximity, the leads and the dot hybridize, meaning that electrons can
effectively hop from/to leads to/from dot. This is modelled using the tunneling Hamiltonian

Ht = Hld +Hrd =
∑
kσ

[
tll
†
kσdσ + t∗l d

†
σlkσ

]
+
∑
kσ

[
trr
†
kσdσ + t∗rd

†
σrkσ

]
in which tl and tr are complex amplitudes quantifying the intensity of the hopping. The whole
setup, whose full Hamiltonian is thus H = Hd +Hl +Hr +Ht, is illustrated in Fig. 1.

HdHl Hr

Hld Hrd

Figure 1: Cartoon of the experimental setup for measuring the conductance through an Anderson-
type impurity. The left and right leads, on which a finite (static) voltage difference is applied to
drive the current, couple to the dot via the tunneling Hamiltonians Hld +Hrd. On the dot itself,
a single level is available, with a Hubbard-type interaction energy cost U for double occupancy.
The dot has a chemical potential set by a gate voltage.
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The leads will act as reservoirs for electrons: putting the leads at different chemical potentials
(voltage), electrons will tend to hop from one lead to the dot and then to the other lead, leading
to an observable current. Since the dot can only accommodate up to two electrons at a time,
and since the electrons are strongly interacting when they sit on the dot, this current will be
a complicated function of the applied voltages, interaction U and tunneling coefficients. This
exercise aims at calculating the so-called conductance through the dot.

a) (10 pts) The (particle number) current going into the left lead can be written as the time
derivative of the total number of electrons in the left lead,

Il =
d

dt
Nl = i [H,Nl] , Nl ≡

∑
kσ

l†kσlkσ.

Show explicitly that

Il = Jl + J†l , where Jl ≡ −itl
∑
kσ

l†kσdσ.

Note (you don’t need to rederive this, it’s obvious) that this implies the similar-looking formula

Ir =
d

dt
Nr = Jr + J†r , where Jr ≡ −itr

∑
kσ

r†kσdσ

which will be of use later on.

b) (10 pts) It is possible to choose a smart basis for our fermions. Namely, in each fixed k, σ
subsector, let us define the unitary transformation U into even and odd combinations (u, v are
parameters to be determined later; they do not depend on k, σ)(

ekσ
okσ

)
≡ U

(
lkσ
rkσ

)
=

(
u v
−v∗ u∗

)(
lkσ
rkσ

)
, |u|2 + |v|2 = 1.

Since this tranformation is by definition unitary, the ekσ and okσ obey canonical equal-time an-
ticommutation relations {ekσ, e†k′σ′} = δkk′δσσ′ and similarly for okσ, with e and o operators
having trivial (vanishing) anticommutation relations with each other. The lead Hamiltonians thus
naturally preserve their form under this transformation,

Hl +Hr = He +Ho, He =
∑
kσ

ξke
†
kσekσ, Ho =

∑
kσ

ξko
†
kσokσ.

Show that a smart choice of the parameters u, v (which you are asked to give explicitly) turns
the tunneling Hamiltonian into the particularly simple form

Ht = Hld +Hrd =
∑
kσ

t̄
[
e†kσdσ + d†σekσ

]
, t̄ ≡

√
|tl|2 + |tr|2,

in other words that the tunneling Hamiltonian only involves the even and impurity fermion modes,
but not the odd ones.

c) (5 pts) Let us now apply a perturbation in the form of a static voltage difference between
the leads. A time-independent current will develop, which we define as I = Il. Note however that
in this time-independent situation, we must have Il = −Ir by charge conservation (the dot cannot
accumulate charge). Therefore, we are entitled to equivalently consider any linear combination of
the form

I = αIl − (1− α)Ir.

Show that under a judicious choice of the free parameter α (which you are asked to give explicitly),
we can write the current operator in terms of the impurity modes d and the odd fermion modes
o only,

I = J + J†, J ≡ it̃
∑
kσ

o†kσdσ, t̃ ≡ tltr
t̄
.
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d) (10 pts) Let us now treat the voltage difference between the leads perturbatively using linear
response theory. Our starting point is the retarded current-current correlation function,

CIIret(t) ≡ −iθ(t)〈[I(t), I(0)]〉

where the average is taken using the full unperturbed Hamiltonian H = Hd + He + Ho + Ht for
ξlk = ξrk ≡ ξk (in the unperturbed system, the leads are at same voltage).

Using the following definitions of the ‘greater’ and ‘lesser’ Green’s functions of the odd electrons
and of the impurity (careful with the time arguments!),

Go,>kσ (t1 − t2) ≡ −i〈okσ(t1)o†kσ(t2)〉, Go,<kσ (t1 − t2) ≡ i〈o†kσ(t2)okσ(t1)〉,
Gd,>σ (t1 − t2) ≡ −i〈dσ(t1)d†σ(t2)〉, Gd,<σ (t1 − t2) ≡ i〈d†σ(t2)dσ(t1)〉,

show that the retarded current-current function can be written as

CIIret(t) = −iθ(t)
∑
kσ

|t̃|2
[
Go,<kσ (−t)Gd,>σ (t)− Go,>kσ (−t)Gd,<σ (t)− (t→ −t)

]
.

For future reference, the conductance G which we will want to calculate is defined by the
zero-frequency limit of the (time) Fourier transform of CIIret,

G ≡ lim
ω→0

−e2

ω
Im CIIret(ω), CIIret(ω) =

∫ ∞
−∞

dteiωtCIIret(t).

N.B.: INFO BLOCK !!!
You can use the equations in this greyed-out part without rederivation.

The retarded current-current function can be Fourier transformed to frequency space as
follows. Using the facts that

[Go,>(t)]∗ = [−i〈o(t)o†(0)〉]∗ = i〈o(0)o†(t)〉 = −Go,>(−t), [Go,<(t)]∗ = −Go,<(−t)

and similar-looking equations for Gd, it can easily be shown that

Im(CIIret(ω)) =
−1

2

∫ ∞
−∞

dteiωt
∑
kσ

|t̃|2
[
Go,<kσ (−t)Gd,>σ (t)− Go,>kσ G

d,<
σ (t)− (t→ −t)

]
.

Using the conventions

G(t) =

∫ ∞
−∞

dω

2π
e−iωtG(ω), G(ω) =

∫ ∞
−∞

dteiωtG(t),

leads after simple manipulations to

Im CIIret(ω) = −|t̃|
2

2

∑
kσ

∫ ∞
−∞

dω1

2π

{
Go,<kσ (ω1)

[
Gd,>σ (ω1 + ω)− Gd,>σ (ω1 − ω)

]
−Go,>kσ (ω1)

[
Gd,<σ (ω1 + ω)− Gd,<σ (ω1 − ω)

]}
.

Making use of the following identities relating the greater/lesser Green’s functions to the
spectral function

G>(ω) = −i(1− nF (ω))A(ω), G<(ω) = inF (ω)A(ω),
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in which nF (ω) = 1
eβω+1

is the usual Fermi-Dirac distribution, the imaginary part of the
retarded current-current function can then be rewritten as

Im CIIret(ω) =
|t̃|2

2

∑
kσ

∫ ∞
−∞

dω1

2π
Aokσ(ω1)

{
Adσ(ω1 + ω)[nF (ω1 + ω)− nF (ω1)]− (ω → −ω)

}
.

e) (10 pts) At this point, you should notice the truly remarkable fact that Im CIIret(ω) is given
by correlations of the odd fermions and impurity ones. Remember that we had shown earlier that
only the even fermions couple to the dot! Therefore, the odd fermions still are described by the
free Hamiltonian Ho =

∑
kσ ξko

†
kσokσ, and they do not couple to the rest of the system.

Show that the retarded Green’s function of the odd fermions is

Go,retkσ (ω) =
1

ω − ξk + iη
.

You can do this either by using the Matsubara formulation of the functional field integral to
calculate the imaginary-time function Gokσ(iωn) ≡ 〈ψ̄kσnψkσn〉 (performing the substitution iωn →
ω+ iη at the end of the calculation) or by calculating this function ‘canonically’ from its definition

Go,retkσ (t) = −iθ(t)〈
{
okσ(t), o†kσ(0)

}
〉

and Fourier transforming the result using the conventions Gret(ω) =
∫∞
−∞ dteiωt−η|t|Gret(t) (in-

cluding a convergence factor η → 0+).

f) (5 pts) Using the relationship between the retarded function and the spectral function

A(ω) = −2Im Gret(ω)

and the relation Im 1
ω−ξ+iη = −πδ(ω− ξ) coming from the Dirac identity, simplify the imaginary

part of the current-current function to

Im CIIret(ω) =
|t̃|2

2

∑
kσ

{
Adσ(ξk + ω) [nF (ξk + ω)− nF (ξk)]−Adσ(ξk − ω) [nF (ξk − ω)− nF (ξk)]

}
.

Show that the conductance itself (see again the definition given earlier in d) is given by

G = e2
∑
kσ

|t̃|2Adσ(ξk)

[
−∂nF (ξ)

∂ξ

]∣∣∣∣
ξk

.

The conductance is thus a direct measurement of the spectral function of electrons on the dot.

g) (10 pts) Let us now turn to the problem of calculating Adσ(ω). The leftover part of our
Hamiltonian (Ho has been dealt with and is thus ignored from now on) is

H = Hd +He +Ht =
∑
σ

ξdσd
†
σdσ + Und↑nd↓ +

∑
kσ

ξke
†
kσekσ +

∑
kσ

[
t̄ e†kσdσ + t̄∗d†σekσ

]
.

Let us now consider the functional field integral representation for this Hamiltonian (directly in
the Matsubara representation). Introducing Grassmann coherent states ψkσn, ψ̄kσn for the even
fermion modes (n is thus the Matsubara frequency index), and φσn, φ̄σn for the impurity modes,
we can write the partition function as

Z =

∫
D(φ̄, φ)

∫
D(ψ̄, ψ)e−Sd−Se−St
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in which

Sd[φ̄, φ] ≡
∑
σn

φ̄σn [−iωn + ξdσ]φσn +
U

β

∑
n,n′,m

φ̄↑n+mφ̄↓n′−mφ↓n′φ↑n,

Se[ψ̄, ψ] ≡
∑
kσn

ψ̄kσn [−iωn + ξk]ψkσn, St[ψ̄, ψ; φ̄, φ] ≡
∑
kσn

[
t̄ ψ̄kσnφσn + t̄∗φ̄σnψkσn

]
.

The even modes appear as bilinears; show that they can be ‘integrated out’, yielding the effective
theory for the impurity modes

e−Sd[φ̄,φ]

∫
D(ψ̄, ψ)e−Se[ψ̄,ψ]−St[ψ̄,ψ;φ̄,φ] = C × e−Seff [φ̄,φ]

where C is some φ, φ̄-independent quantity (so we can forget about it and set it to 1 here) and

Seff [φ̄, φ] ≡
∑
σn

φ̄σn [−iωn + ξdσ + Σ(iωn)]φσn +
U

β

∑
n,n′,m

φ̄↑n+mφ̄↓n′−mφ↓n′φ↑n,

in terms of the even electron ‘self-energy’ function which is defined as

Σ(iωn) ≡
∑
k

|t̄|2

iωn − ξk
.

h)* (10 pts) The effective theory we have obtained is actually quite simple, since it only involves
the impurity fermions. Let us now make the further simplifying assumption that the even electron
self-energy is equal to some constant, Σ(iωn) ≡ Σ− i

2Γ (with Σ,Γ ∈ R). Show2 that the retarded
Green’s function of the impurity fermions then takes the form (here, for spin ↑, the expression for

Cd,ret↓ being similar)

Cd,ret↑ (ω) =
1− 〈nd↓〉

ω − ξd↑ − Σ + i
2Γ

+
〈nd↓〉

ω − ξd↑ − U − Σ + i
2Γ
.

Show that the spectral function then is given by the sum of two Lorentzians,

Ad↑(ω) = −2Im Cd,ret↑ (ω) =
(1− 〈nd↓〉)Γ

(ω − ξd↑ − Σ)2 + (Γ/2)2
+

〈nd↓〉Γ
(ω − ξd↑ − U − Σ)2 + (Γ/2)2

.

Make a sketch of the expected conductance G as a function of ξd↑ (thus as a function of the
gate voltage applied on the dot), assuming that the interaction U and inverse lifetime ' Γ take
some nonzero values (you can put Σ to zero), and that the temperature is zero. Give a physical
interpretation of whichever peaks you find in the conductance G(ξd↑).

2Hint: consider inserting the identity 1 = (1 − nd↓) + nd↓ in the correlation function for the spin-up impurity
modes, and using the fact that 1 − nd↓ projects onto the subspace with nd↓ = 0, and that nd↓ projects onto the
subspace with nd↓ = 1.
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Useful Formulas

Trigonometric and hyperbolic functions

sin(θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2, cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2,

cos2 θ + sin2 θ = 1, sin2 θ =
1

2
(1− cos 2θ), cos2 θ =

1

2
(1 + cos 2θ),

sinh(θ1 + θ2) = sinh θ1 cosh θ2 + cosh θ1 sinh θ2, cosh(θ1 + θ2) = cosh θ1 cosh θ2 + sinh θ1 sinh θ2,

cosh2 θ − sinh2 θ = 1, sinh2 θ =
1

2
(cosh 2θ − 1), cosh2 θ =

1

2
(cosh 2θ + 1).

Series expansions

ex =

∞∑
n=0

xn

n!
, cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
, sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
,

(1 + x)α =

∞∑
n=0

(
α
n

)
xn = 1 + αx+

α(α− 1)

2
x2 + ..., ln(1 + x) =

∞∑
n=1

(−1)n+1x
n

n

Bosonic occupation number states

[b, b†] = 1, |n〉 =
1√
n!

(b†)n|0〉, b†|n〉 =
√
n+ 1|n+ 1〉, b|n〉 =

√
n|n− 1〉.

Pauli spin matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, σ± =

1

2
(σx ± iσy).

Spins on a lattice

SU(2) spin algebra (here, i, j, k = x, y, z and m,n denote lattice sites).[
Ŝim, Ŝ

j
n

]
= iδmnε

ijkŜkn.

Spin raising and lowering operators: Ŝ±m = Ŝxm ± iŜym with[
Ŝzm, Ŝ

±
n

]
= ±δnmŜ±m,

[
Ŝ+
m, Ŝ

−
n

]
= 2δnmŜ

z
m.

For the S = 1/2 case, one can use the representation Si = σi/2, i = x, y, z.

Holstein-Primakoff transformation

Ŝ−m = a†m(2S − a†mam)1/2, Ŝ+
m = (2S − a†mam)1/2am, Ŝzm = S − a†mam

where am, a†m are bosonic operators obeying the canonical algebra [am, a
†
n] = δmn (other commu-

tators vanish).

Fourier transformation

ak =
1√
N

N∑
m=1

eikmam, am =
1√
N

∑
k∈BZ

e−ikmak, [ak, a
†
k′ ]ζ =

{
aka
†
k′ − a

†
k′ak, bosons

aka
†
k′ + a†k′ak, fermions

= δkk′
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Bogoliubov transformation

The matrix (
a b
b −a

)
(here for a, b ∈ R) can be diagonalized by the unitary transformation

UHU† =

(
ε 0
0 −ε

)
, U =

(
cos θ sin θ
sin θ − cos θ

)
where tan 2θ = b

a and ε = (a2 + b2)1/2.

Coherent states (bosons: ζ = 1, fermions: ζ = −1)

|φ〉 ≡ exp

[
ζ
∑
i

φia
†
i

]
|0〉

ai|φ〉 = φi|φ〉, a†i |φ〉 = ζ∂φi |φ〉, 〈φ|a†i = 〈φ|φ̄i, 〈φ|ai = ∂φ̄i〈φ| ∀i.

The norm of a coherent state is

〈φ|φ〉 = exp

[∑
i

φ̄iφi

]
.

Coherent states form an (over)complete set of states:∫ ∏
i

d(φ̄i, φi)e
−

∑
i φ̄iφi |φ〉〈φ| = 1F

with 1F the identity in Fock space. The measures are d(φ̄i, φi) = dφ̄idφi
π for bosons, d(φ̄i, φi) =

dφ̄idφi for fermions.

Campbell-Baker-Hausdorff formula

The general identity called the Campbell-Baker-Hausdorff formula reads:

e−BAeB =

∞∑
n=0

1

n!
[A,B]n, where [A,B]n = [[A,B]n−1, B], [A,B]0 ≡ A.

This can be specialized to some simpler particular cases. Let A and B be two quantum operators
such that [A,B] commutes with A and B. Then, the following identities hold:

eA+B = eAeBe−
1
2 [A,B], [A, eλB ] = λ[A,B]eλB .

Another useful one is:

if [A,B] = DB and [A,D] = 0 = [B,D], then f(A)B = Bf(A+D).

This then implies (under the same conditions) that

eABe−A = BeD.

Grassmann variables

∀i, j, ηiηj = −ηjηi,
∫
dηi = 0,

∫
dηiηi = 1.
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Coherent state path integral representation of the partition function

For a second-quantized Hamiltonian of the form

Ĥ(a†, a) =
∑
ij

hija
†
iaj +

∑
ijkl

Vijkla
†
ia
†
jakal,

the partition function is

Z =

∫
D(ψ̄, ψ)e−S[ψ̄,ψ].

Here, we work directly in the Matsubara frequency (usually labeled by the index n, whose value
runs over all integers) representation. The measure is defined as D(ψ̄, ψ) =

∏
i

∏
n d(ψ̄in, ψin)

and d(ψ̄, ψ) ≡ βdψ̄dψ for fermions and d(ψ̄, ψ) ≡ 1
πβdψ̄dψ for bosons (see next subsection for the

Gaussian integral). The effective action is

S[ψ̄, ψ] =
∑
ij,n

ψ̄in [(−iωn − µ)δij + hij ]ψjn + T
∑

ijkl,{ni}

Vijklψ̄in1
ψ̄jn2

ψkn3
ψln4

δn1+n2,n3+n4
.

Gaussian integration over bosonic/Grassmann variables

By definition, in the frequency representation of the action, we use∫
d(ψ̄, ψ)e−ψ̄εψ = (βε)−ζ

with ζ = +1 for bosons and −1 for fermions.

Wick’s theorem (fermions)

The expectation value of a product of fermionic fields over a noninteracting theory is given by the
sum over all pairings signed by the permutation order. For four fields,

〈ψ̄aψ̄bψcψd〉0 = 〈ψ̄aψd〉0〈ψ̄bψc〉0 − 〈ψ̄aψc〉0〈ψ̄bψd〉0.

The first term is the Hartree term, the second is the Fock term.

Relations between Green’s functions

retarded from imaginary-time: Cret(ω) = Cτ (iωn)|iωn→ω+iη

advanced from imaginary-time: Cret(ω) = Cτ (iωn)|iωn→ω−iη

Matsubara sums (fermions)

∑
n

ln(β [−iωn + ξ]) = ln
[
1 + e−βξ

]
,

T
∑
n

1

iωn − εa + µ
=

1

eβ(εa−µ) + 1
≡ nF (εa, µ).

Interaction representation

For the HamiltonianH = H0+HI in whichHI represents the ‘interaction’ andH0 the free (exactly-
solvable) model, the interaction picture states and operators are related to the Schrödinger ones
by

|ψI(t)〉 = eiH0t|ψS(t)〉, OI(t) = eiH0tOSe−iH0t.
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Linear response theory: the Kubo formula

For the time-dependent Hamiltonian (in the Schrödinger picture)

H(t) = H0 + F (t)P̂ ,

with initial condition that the system at t→ −∞ is in state |ψo〉, the time-dependent expectation
value of operator O is given in linear response by the Kubo formula

Ō(t) = 〈ψ0|Ô|ψ0〉+

∫ ∞
−∞

dt′CÔ,P̂ret,ψ0
(t− t′)F (t′) +O(F 2)

in terms of the retarded correlation function (computed in state |ψ0〉) between the perturbation
and observable, this retarded function being defined (for a generic state |ψ〉) as

CÔ,P̂ret,ψ(t− t′) ≡ −iθ(t− t′)〈ψ|[ÔI(t), P̂ I(t′)]|ψ〉.

12


