
Statistical Physics and Condensed

Matter Theory I: Final exam

Tuesday 25 October 2016, 18:00 - 21:00, SP H0.08

• Please write legibly and be explicit in your answers. I cannot give you points for things I
can’t/don’t see !

• Please use separate sheets for each question, and put your name, student number
and study programme on each of them.

• There is a collection of useful formulas at the end, which you can use without rederivation.
Class notes and books are not allowed.

• This exam consists of 2 problems. You should do both of them.

• Sub-questions marked with ∗ are particularly challenging. Consider solving them only once
you’re finished with the rest.

• Be smart: if you’re stuck on a (sub-)question, don’t lose too much time, you can always
move on to the next one (the questions are for the most part formulated in order to make
this possible).

• The points add up to 110, that’s 10% bonus for you from the start.
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1. Heisenberg antiferromagnet in a crystal field (35 pts)

Consider the general spin S one-dimensional Heisenberg antiferromagnet in the presence of a
so-called crystal field term:

H = J

N∑
m=1

Sm · Sm+1 +D
∑
m

(Szm)2

For definiteness, we consider an even number of sites N and impose periodic boundary conditions
Sm+N = Sm.

a) (5 pts)

What is the effect of the crystal field term when S = 1/2 ?

b) (5 pts)

For generic S, what are the classical ground states for D < 0 ? For D > 0 ? Are they also
quantum ground states?
Hint: think of Néel ordering in various directions, and how H acts on states you’re thinking of.

c) (10 pts)

From now on, we assume S � 1 and D < 0. Since antiferromagnetic configurations will be
preferred, before applying the Holstein-Primakoff transformation, we rotate the spins on one sub-
lattice (say the even sites) by π around the x-axis, Sx2n = S̃x2n, Sy2n = −S̃y2n, Sz2n = −S̃z2n,
Sx,y,z2n+1 = S̃x,y,z2n+1 to yield the equivalent Hamiltonian

H = −J
N∑
m=1

[
S̃zmS̃

z
m+1 − S̃xmS̃xm+1 + S̃ymS̃

y
m+1

]
+D

∑
m

(
S̃zm

)2

.

Applying Holstein-Primakoff, show that this allows to write down the Hamiltonian (to leading
nontrivial order in 1/S) in Fourier modes

H = −N(J −D)S2 + JS
∑
k

[
(1−D/J) 2 a†kak + cos k (a−kak + a†ka

†
−k)
]

+O(S0).

d) (10 pts)

Still for D < 0, diagonalize this Hamiltonian to leading nontrivial order in 1/S. What is the
spin-wave spectrum ?
Hint: you need to explicitly perform a Bogoliubov transformation (see ‘Useful formulas’).

e) (5 pts)

What happens to the spectrum as k → 0 ? Contrast this result to that in the case of the pure
antiferromagnet (D = 0), in which εk = 2JS| sin k|.
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Figure 1: Cartoon of a (too simplified to
be realistic) photoemission setup. A 1d
chain in which electrons can hop around
is represented by Hamiltonian Hc. Next
to it is a 1d free-space (continuum) chan-
nel represented by Hs. The whole setup
is bathed in an electromagnetic field de-
scribed by Ha. The field can induce hop-
pings between the chain and channel due
to the coupling Hsca: an electron in the
chain can absorb a photon and be ‘pro-
moted’ from the chain to the channel,
where it can be observed (the reverse is
of course also in principle possible, but
not relevant to the experiment).

2. Photoemission spectroscopy (75 pts)

One of the obvious first questions to ask about an electronic system is: what are the energy levels
available to the electrons? It is thus desirable to have probes which are able to directly ‘see’ those
levels (namely, to directly observe the single-particle spectrum of a system). Electromagnetic
waves are commonly used, and the ensuing set of methods is collectively known as spectroscopy.

In this problem, we consider a (cartoonish) setup in which we describe spectroscopy from
photoemission, namely the ‘emission’ of electrons (for simplicity, we ignore spin) from a sample
after stimulation by light. The setup is illustrated in Fig. 1.

The Hamiltonian of the chain is taken to only involve nearest-neighbour hopping, and is written
using canonical fermionic operators cj , c

†
j as1

Hc − µNc = −t
∑
j

[
c†jcj+1 + h. c.

]
− µ

∑
j

c†jcj ,
{
cj , c

†
j′

}
= δj,j′ .

Performing a Fourier transformation (assuming periodic boundary conditions over N sites, namely
site N + 1 is site 1) for simplicity) using the conventions

cj =
1√
N

∑
kn

eikjck, ck =
1√
N

N∑
j=1

e−ikjcj , kn =
2π

N
n, n = −N/2 + 1, ..., N/2,

we have that
{
ck, c

†
k′

}
= δk,k′ and that the chain Hamiltonian can be written

Hc − µNc =
∑
kn

(−2t cos k − µ)c†kck ≡
∑
kn

ξkc
†
kck.

For the free-space channel, we rather consider a continuum (no lattice) and directly write its
Hamiltonian using momentum-labeled fermionic operators s(p), s†(p) (−∞ < p <∞) as

Hs =

∫ ∞
−∞

dp εs(p)s
†(p)s(p),

{
s(p), s†(p′)

}
= δ(p− p′),

in which εs(p) is here left unspecified (if you insist, εs(p) = p2

2m but we won’t make use of this).
Finally, we keep the light field as simple as it can be, and choose a monochromatic source of

fixed frequency ω. Using bosonic operators a, a† for the photons, its Hamiltonian is simply

Ha = ωa†a,
[
a, a†

]
= 1.

1We already include the chemical potential here for convenience.
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The ‘basis’ (noninteracting; exactly-solvable) Hamiltonian is thus2

H0 = Hc − µNc +Hs +Ha.

Note: this exercise is divided into 3 parts. You can start Part II without having
finished Part I. Part III is for those who are trying to impress me.

If you get stuck, just move on to the next (sub)question.

2 Part I: noninteracting electrons

a) (10 pts) The light field is able to excite electrons out of the chain and into the continuum.
Such a process involves a photon being absorbed, an electron in the chain being ‘destroyed’ and
re-‘created’ in the continuum (or the reverse). This coupling can be modeled by adding a term of
the form

Hsca = γ

∫ ∞
−∞

dp
∑
k

s†(p)cka+ h.c.

to our Hamiltonian, in which γ represents some matrix element for the scattering event (for
simplicity, we have assumed γ to be independent of p and k).

The observable we are intersted in is the number of particles being scattered into continuum
states at momentum p per unit of time. This rate is given in terms of the number density
ns(p) = s†(p)s(p) as

d

dt
ns(p) = i [H,ns(p)] .

Show that this operator is
d

dt
ns(p) = −iγ

∑
k

s†(p)cka+ h.c.

b) (10 pts) Let us assume that the light field (generated by a laser or other coherent source) is
maintained in the coherent state

|φ〉a = eφa
†
|0〉a

in which |0〉a is the vacuum of a. As far as the electrons are concerned, we can thus use operators
averaged over this state of the light field,

Hsc(t) ≡ a〈φ(t)|Hsca|φ(t)〉a
a〈φ|φ〉a

and R(p, t) ≡ a〈φ(t)| ddtns(p)|φ(t)〉a
a〈φ|φ〉a

with |φ(t)〉a = e−iHat|φ〉a. Show that this leads to the following expressions for the effective
Hamiltonian for s and c electrons and for the rate (here in the Schrödinger picture)

Hsc(t) = γφe−iωtJ + h.c., R(p, t) = −iγφe−iωt j(p) + h.c.

in which

J ≡
∫ ∞
−∞

dp j(p), j(p) =
∑
k

s†(p)ck.

2Of course, the boson a commutes with fermions, [a, ck] = 0 = [a, s(p)], and fermions anticommute, {ck, s(p)}
= 0.
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c) (10 pts) Our Hamiltonian now involves only electrons, and reads

H(t) = H0,sc +Hsc(t), H0,sc ≡ Hc − µNc +Hs.

We will consider zero temperature and place the chain at chemical potential µ. The free-space
channel is initially empty, so its state is just the vacuum (its chemical potential is zero). We thus
take expectation values over the state

|µ; 0〉 ≡ |µ〉c ⊗ |0〉s, 〈(...)〉0 ≡ 〈µ; 0|(...)|µ; 0〉

which is the Fermi sea ground state of chain electrons at chemical potential µ, tensored with the
vacuum of free-space channel electrons.

Using the Kubo formula, show that the scattering rate we are looking for is given by

R̄(p, t) = R̄0 − iγ2|φ|2
∫ ∞
−∞

dt′Cj(p),J
†

ret (t− t′)e−iω(t−t′) + h.c.

where
Cj(p),J

†

ret (t− t′) ≡ −iθ(t− t′)〈
[
jI(p, t), JI

†
(t′)
]
〉0

with operators in the interaction representation based on H0,sc, i.e. OI = eiH0,sctOe−iH0,sct.

d) (10 pts) Show (most easily using a direct calculation, expressing any time dependence di-
rectly on the operators) that this retarded Green’s function equals

Cj(p),J
†

ret (t− t′) = iθ(t− t′)
∑
k

ei[εs(p)−ξk](t−t′)n̄k

in which n̄k ≡ c〈µ|c†kck|µ〉c = nF (ξk) = 1
1+eβξk

is the expectation value of the number of electrons

in mode k in the chain (you don’t have to rederive this last result).

e) (5 pts) Using this result in the Kubo formula, and using an η-regulator to ensure con-
vergence of the time integral (i.e. replacing eiωt → eiωt−η|t|, η → 0+), and remembering that
limη→0+

1
π

η
x2+η2 = δ(x), show that R̄(p, t) is in fact time-independent and equal to

R̄(p) = 2πγ2|φ|2
∑
k

δ(ω − εs(p) + ξk)n̄k.

For your information: you can now clearly see the usefulness of photoemission spectroscopy.
It gives direct access to the energy levels and their occupation.

f)* (5 pts) Going to infinite lattice sizeN →∞, the momentum sum
∑
k(...) becomesN

∫ π
−π dk(...),

and the scattering rate per site

r̄(p) ≡ lim
N→∞

R̄(p)

N
= 2πγ2|φ|2

∫ π

−π
dkδ (ω − εs(p) + ξ(k)) n̄(k).

Using the δ-function rule

δ(f(x)) =
∑

x0 zero of f

1

|f ′(x0)|
δ(x− x0),

obtain an explicit expression for r̄(p), in which you have explicitly evaluated n̄(k). Provide as
accurate a sketch as you can for this rate, given the form of ξ(k) obtained above, and assuming
εs(p) = p2/2m.
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2 Part II: interacting electrons

Let us now turn on interactions between electrons when they are on the chain. Specifically, we
will modify our Hc to include a Hubbard repulsion term, which is counted if two electrons are on
neighbouring sites:

Hc − µNc = −t
∑
j

[
c†jcj+1 + h. c.

]
− µ

∑
j

c†jcj + U
∑
j

njnj+1.

II.a) (5 pts) Write the Hubbard interaction term in Fourier space, using the conventions in I.a.

II.b) (5 pts) Let us focus first on the free case U = 0. The coherent state path integral
representation of the partition function Z(0) and free effective action3 of the free system are

Z(0) =

∫
D(ψ̄, ψ)e−S0[ψ̄,ψ], S0[ψ̄, ψ] =

∑
kn

ψ̄kn [−iωn + ξk]ψkn.

By directly performing the Grassmann integrations, show that the free (U = 0) Green’s function
is

G(0)
k,n ≡ 〈ψ̄knψkn〉0 =

1

iωn − ξk
where we denote 〈(...)〉0 =

1

Z(0)

∫
D(ψ̄, ψ)(...)e−S0[ψ̄,ψ].

II.c) (5 pts) By direct calculation, show that up to and including terms of first order in U/t,
the Green’s function of the interacting system can be written4

Gk,n ≡ 〈ψ̄knψkn〉 =
1

iωn − ξk − Σk,n

where Σk,n is called the self-energy. Give an expression for it to first order in U .

II.d) (5 pts) What is the influence of the Hubbard interaction term, to first order in U/t, on
the expectation value of the number of electrons in momentum state k? In other words, calculate

〈nk〉 =
1

β

∑
n

〈ψ̄knψkn〉.

2 Part III, finale

III.a)* (5 pts) Using the result in II.d, and referring back to I.e-f, give a formula for the
scattering rate r̄(p) in the presence of Hubbard interactions (to first order), and sketch it.

3Here, we always write the momentum k and Matsubara frequency index n separately.
4Hint: 1 + U = 1

1−U
+O(U2).
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Useful Formulas

Trigonometric and hyperbolic functions

sin(θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2, cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2,

cos2 θ + sin2 θ = 1, sin2 θ =
1

2
(1− cos 2θ), cos2 θ =

1

2
(1 + cos 2θ),

sinh(θ1+θ2) = sinh θ1 cosh θ2+cosh θ1 sinh θ2, cosh(θ1+θ2) = cosh θ1 cosh θ2+sinh θ1 sinh θ2,

cosh2 θ − sinh2 θ = 1, sinh2 θ =
1

2
(cosh 2θ − 1), cosh2 θ =

1

2
(cosh 2θ + 1).

Series expansions

ex =

∞∑
n=0

xn

n!
, cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
, sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
,

(1 + x)α =

∞∑
n=0

(
α
n

)
xn = 1 + αx+

α(α− 1)

2
x2 + ..., ln(1 + x) =

∞∑
n=1

(−1)n+1x
n

n

Bosonic occupation number states

[b, b†] = 1, |n〉 =
1√
n!

(b†)n|0〉, b†|n〉 =
√
n+ 1|n+ 1〉, b|n〉 =

√
n|n− 1〉.

Pauli spin matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, σ± =

1

2
(σx ± iσy).

Spins on a lattice

su(2) spin algebra (here, i, j, k = x, y, z and m,n denote lattice sites and εijk is the completely
antisymmetric tensor with εijk = ±1 for ijk = even/odd permutation of xyz, 0 otherwise).[

Ŝim, Ŝ
j
n

]
= iδmnε

ijkŜkn.

Spin raising and lowering operators: Ŝ±m = Ŝxm ± iŜym with[
Ŝzm, Ŝ

±
n

]
= ±δnmŜ±m,

[
Ŝ+
m, Ŝ

−
n

]
= 2δnmŜ

z
m.

For the S = 1/2 case, one can use the representation Si = σi/2, i = x, y, z.

Holstein-Primakoff transformation

Ŝ−m = a†m(2S − a†mam)1/2, Ŝ+
m = (2S − a†mam)1/2am, Ŝzm = S − a†mam

where am, a†m are bosonic operators obeying the canonical algebra [am, a
†
n] = δmn (other commu-

tators vanish).

Fourier transformation

ak =
1√
N

N∑
m=1

eikmam, am =
1√
N

∑
k∈BZ

e−ikmak, [ak, a
†
k′ ]ζ =

{
aka
†
k′ − a

†
k′ak, bosons

aka
†
k′ + a†k′ak, fermions

= δkk′
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Bogoliubov transformation (bosons)

The quadratic form (
a†k a−k

)( 1 γk
γk 1

)(
ak
a†−k

)
can be diagonalized by the transformation to new variables αk,(

ak
a†−k

)
= U−1

k

(
αk
α†−k

)
,

with [αk, α
†
k′ ] = δkk′ . The matrix Uk is

Uk =

(
cosh θk sinh θk
sinh θk cosh θk

)
= cosh θk1 + sinh θkσ

x

and is such that U†k = Uk and U−1
k = σzUkσ

z (pseudo-unitarity). Choosing γk = tanh 2θk makes
the quadratic form matrix diagonal,

(U−1
k )†

(
1 γk
γk 1

)
U−1
k =

1

cosh 2θk
1 =

[
1− γ2

k

]1/2
1.

Bogoliubov transformation (fermions)

The matrix (
a b
b −a

)
(here for a, b ∈ R) can be diagonalized by the unitary transformation

UHU† =

(
ε 0
0 −ε

)
, U =

(
cos θ sin θ
sin θ − cos θ

)
where tan 2θ = b

a and ε = (a2 + b2)1/2.

Random walks

Diffusion equation: (
∂

∂t
−D ∇2

)
P (r, t) = 0.

In the scaling limit, for a d-dimensional hypercubic lattice, the diffusion constant D is related to
the lattice spacing a, step time δt and dimension d by

D = lim
a→0
δt→0

a2

2dδt
.

The probability per unit volume of being at position r1 at time t1 given that one was at r0 and
time t0 is given by

p(r1, t1|r0, t0) ≡ lim a−dPr1,t1|r0,t0 =

∫ ∞
−∞

ddk

(2π)d
e−(t1−t0)Dk2+ik·(r1−r0)

=
1

[4πD(t1 − t0)]
d
2

exp

[
− |r1 − r0|2

4D(t1 − t0)

]
.
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Coherent states (bosons: ζ = 1, fermions: ζ = −1)

|φ〉 ≡ exp

[
ζ
∑
i

φia
†
i

]
|0〉

ai|φ〉 = φi|φ〉, a†i |φ〉 = ζ∂φi |φ〉, 〈φ|a†i = 〈φ|φ̄i, 〈φ|ai = ∂φ̄i〈φ| ∀i.
The norm of a coherent state is

〈φ|φ〉 = exp

[∑
i

φ̄iφi

]
.

Coherent states form an (over)complete set of states:∫ ∏
i

d(φ̄i, φi)e
−

∑
i φ̄iφi |φ〉〈φ| = 1F

with 1F the identity in Fock space. The measures are d(φ̄i, φi) = dφ̄idφi
π for bosons, d(φ̄i, φi) =

dφ̄idφi for fermions.

Campbell-Baker-Hausdorff formula

The general identity called the Campbell-Baker-Hausdorff formula reads:

e−BAeB =

∞∑
n=0

1

n!
[A,B]n, where [A,B]n = [[A,B]n−1, B], [A,B]0 ≡ A.

This can be specialized to some simpler particular cases. Let A and B be two quantum operators
such that [A,B] commutes with A and B. Then, the following identities hold:

eA+B = eAeBe−
1
2 [A,B], [A, eλB ] = λ[A,B]eλB .

Another useful one is:

if [A,B] = DB and [A,D] = 0 = [B,D], then f(A)B = Bf(A+D).

This then implies (under the same conditions) that

eABe−A = BeD.

Grassmann variables

∀i, j, ηiηj = −ηjηi,
∫
dηi = 0,

∫
dηiηi = 1.

Coherent state path integral representation of the partition function

For a second-quantized Hamiltonian of the form

Ĥ(a†, a) =
∑
ij

hija
†
iaj +

∑
ijkl

Vijkla
†
ia
†
jakal,

the partition function is

Z =

∫
D(ψ̄, ψ)e−S[ψ̄,ψ].

Here, we work directly in the Matsubara frequency (usually labeled by the index n, whose value
runs over all integers) representation. The measure is defined as D(ψ̄, ψ) =

∏
i

∏
n d(ψ̄in, ψin)

and d(ψ̄, ψ) ≡ βdψ̄dψ for fermions and d(ψ̄, ψ) ≡ 1
πβdψ̄dψ for bosons (see next subsection for the

Gaussian integral). The effective action is

S[ψ̄, ψ] =
∑
ij,n

ψ̄in [(−iωn − µ)δij + hij ]ψjn + T
∑

ijkl,{ni}

Vijklψ̄in1 ψ̄jn2ψkn3ψln4δn1+n2,n3+n4 .
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Gaussian integration over bosonic/Grassmann variables

By definition, in the Matsubara frequency representation of the action, we use∫
d(ψ̄in, ψin)e−ψ̄inεψin = (βε)−ζ

with ζ = +1 for bosons and −1 for fermions.

Wick’s theorem (fermions)

The expectation value of a product of fermionic fields over a noninteracting theory is given by the
sum over all pairings signed by the permutation order. For four fields,

〈ψ̄aψ̄bψcψd〉0 = 〈ψ̄aψd〉0〈ψ̄bψc〉0 − 〈ψ̄aψc〉0〈ψ̄bψd〉0.

The first term is the Hartree term, the second is the Fock term.

Relations between Green’s functions

retarded from imaginary-time: Cret(ω) = Cτ (iωn)|iωn→ω+iη

advanced from imaginary-time: Cret(ω) = Cτ (iωn)|iωn→ω−iη

Matsubara sums (fermions)

∑
n

ln(β [−iωn + ξ]) = ln
[
1 + e−βξ

]
,

T
∑
n

1

iωn − εa + µ
=

1

eβ(εa−µ) + 1
≡ nF (εa, µ).

Interaction picture/representation

For the HamiltonianH = H0+HI in whichHI represents the ‘interaction’ andH0 the free (exactly-
solvable) model, the interaction picture states and operators are related to the Schrödinger ones
by

|ψI(t)〉 = eiH0t|ψS(t)〉, OI(t) = eiH0tOSe−iH0t.

Linear response theory: the Kubo formula

For the time-dependent Hamiltonian (in the Schrödinger picture)

H(t) = H0 + F (t)P̂ ,

with initial condition that the system at t→ −∞ is in state |ψo〉, the time-dependent expectation
value of operator O is given in linear response by the Kubo formula

Ō(t) = 〈ψ0|Ô|ψ0〉+

∫ ∞
−∞

dt′CÔ,P̂ret,ψ0
(t− t′)F (t′) +O(F 2)

in terms of the retarded correlation function (computed in state |ψ0〉) between the perturbation
and observable, this retarded function being defined (for a generic state |ψ〉) as

CÔ,P̂ret,ψ(t− t′) ≡ −iθ(t− t′)〈ψ|[ÔI(t), P̂ I(t′)]|ψ〉.

If your perturbation consists of a sum of terms, the total linear response is of course given by the
sum of the individual responses.

10


