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Jean-Sébastien Caux

Semester 2, Period 5 (April-May 2019)

Where and how I can be reached

Room C4.262, Science Park 904, Postbus 94485, 1090 GL Amsterdam, tel. 020 525 5775
email: j.s.caux@uva.nl or prof@jscaux.org

Course webpage: jscaux.org/teaching/2018-19 FPITFT.

Course assistant: Yuan Miao, room C4.261f, email: y.miao@uva.nl.

Suggested reading (to supplement class notes)

• [BDFN] J. J. Binney, N. J. Dowrick, A. J. Fisher and M. E. J. Newman, The Theory of
Critical Phenomena, Oxford University Press, 1992.

• [FH] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill,
New York, 1965.

• [ID1] C. Itzykson and J.-M. Drouffe, Statistical Field Theory 1: From Brownian Motion
to Renormalization and Lattice Gauge Theory, Cambridge Monographs on Mathematical
Physics, Cambridge University Press, 1991.

Prerequisites

Physics: classical mechanics, basic statistical and thermal physics, quantum mechanics, electro-
magnetism.

Mathematics: linear algebra, Fourier transforms, complex variables.

Plan of the course

• Session 1 (Wed 10 April, D1.112) Classical paths: Brownian motion and random walks.

• Session 2 (Wed 24 April, G5.29) Summing over paths. Exact solution of the two-dimensional
Ising model.

• Session 3 (Wed 22 May, A1.30) The path integral for a quantum particle - Rudiments of
field theory.

• Final exam (Tue 28 May, F1.02).

1



From PI to FT 2017 (J-S Caux)

Fourier transformations

In the continuum. Let f(x) be an integrable function of a real parameter x, which satisfies∫∞
−∞ dx|f(x)| <∞. It can be represented as a Fourier transform:

f(x) =

∫ ∞
−∞

dk

2π
eikxf(k) with coefficients f(k) =

∫ ∞
−∞

dxe−ikxf(x) (1)

To go from one representation to the other, one uses the identity∫ ∞
−∞

dk

2π
eik(x−x0) = δ(x− x0) (2)

Continuum, finite interval. Let f(x) be an integrable function defined on a finite interval
x ∈ [0, L[. If we extend the definition of f(x) to the whole real line by assuming (quasi-)periodicity
f(x+ L) = ei2παf(x) for some α ∈ [0, 1[, we can represent f(x) as the Fourier series

f(x) =
1

L

∑
n∈Z

eiknxfkn , fkn =

∫ L

0

dxe−iknxf(x) where kn ≡
2π

L
(n+ α) (3)

To go from one representation to the other, one uses the identities

1

L

∑
n∈Z

eikn(x−x0) =
∑
m∈Z

δ(x− x0 −mL) ,

∫ L

0

dxei(kn−km)x = Lδn,m (4)

The infinite-size limit is easily recovered by using the replacement 1
L

∑
n →

∫∞
−∞

dk
2π .

Finite lattice. Consider a lattice of N points labeled by index j = 1, ..., N . We denote the lattice
spacing by a. Let fj be a number associated to site j. Assuming again some (quasi-)periodicity
fj+N = ei2παfj , the Fourier series can be defined as (other conventions are possible)

fj =
1

N

∑
kn∈ BZ

eiknajfkn , fkn =

N∑
j=1

e−iknajfj , kn ≡
2π

Na
(n+ α) (5)

To go from one representation to the other, you can use the identities

1

N

∑
kn∈ BZ

eikna(j−l) = δj,l ,

N∑
j=1

e−i(kn−km)aj = Nδn,m (6)

The notation kn ∈ BZ means that we sum the momenta over one Brillouin zone, for example by
convention by choosing n = −N/2 + 1,−N/2 + 2, ..., N/2 (for N even) or n = 0, ..., N − 1. In

the continuum limit a → 0, we simply redefine Na → L, aj → x and use the rule a
∑N
j=1(...) →∫ L

0
dx(...) to fall back onto the earlier formulas.

Infinite lattice. When the lattice becomes infinite (N → ∞ so now the lattice index j ∈ Z),
the momentum becomes a continuous variable k ∈] − π/a, π/a] (or equivalently k ∈ [0, 2π/a[ if
you prefer). We then write

fj = a

∫ π
a

−πa

dk

2π
eikajf(k) , f(k) =

∑
j∈Z

e−ikajfj . (7)
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To go from one representation to the other, we use the identitites

a

∫ π
a

−πa

dk

2π
eika(j−l) = δjl ,

∑
j∈Z

e−i(k1−k2)aj =
2π

a
δ(k1 − k2) , ki ∈

]
−π
a
,
π

a

]
. (8)

This is a special case of the more general identity (which is worth remembering)∑
n∈Z

e2πiny =
∑
n̄∈Z

δ(y − n̄). (9)

Note that very often, the prefactors 1
2π , 1

N or 1
L are ‘shared’ between the direct and inverse

Fourier transforms. You can then encounter expressions like

fj =
1√
N

∑
kn∈ BZ

eiknaj f̃kn , f̃kn =
1√
N

N∑
j=1

e−iknajfj . (10)

This is only a matter of convention, and should be clear from the context. The only important
thing is that the product of prefactors equals 1

N (for the case of a finite lattice), 1
L (for the finite

continuum interval) or 1
2π (for the infinite lattice or infinite continuum).

The multidimensional cases are straightforward generalizations of the above formulas.
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Gaussian integration

Review of Gaussian integration One-dimensional Gaussian integral:

I(a) ≡
∫ ∞
−∞

dxe−
a
2 x

2

=

√
2π

a
, <a > 0. (11)

First moment: ∫ ∞
−∞

dxx2e−
a
2 x

2

= −2∂aI(a) =

√
2π

a3
. (12)

With linear piece:∫ ∞
−∞

dxe−
a
2 x

2+bx =

∫ ∞
−∞

dxe−
a
2 (x−b/a)2+ b2

2a =

√
2π

a
e
b2

2a , b ∈ C. (13)

Generalization to complex arguments: for z = x+ iy,
∫
d(z̄, z) =

∫∞
−∞ dxdy,∫

d(z̄, z)e−z̄wz =
π

w
, <w > 0. (14)

and ∫
d(z̄, z)e−z̄wz+ūz+z̄v =

π

w
e
ūv
w , <w > 0. (15)

Gaussian integration in more than one dimension: real case∫
dve−

1
2v

TAv = (2π)N/2 det A−1/2 (16)

where A is a positive definite real symmetric N -dimensional matrix and v is an N -component
real vector.

Proof: can write A = OTDO with O an orthogonal matrix and D a diagonal matrix. Change
of variables v → Ov having unit Jacobian detO = 1. Factorizes into product of one-dimensional

Gaussian integrals, result
∏N
i=1

√
2π
di

. Replace product by determinant.

Multidimensional generalization of (13):∫
dve−

1
2v

TAv+jT ·v = (2π)N/2 det A−1/2e
1
2 j
TA−1j (17)

This is important as a ‘generator’ of other useful identities.

Applying ∂2
jmjn
|j=0 to LHS of (17) gives

∫
dve−

1
2v

TAvvmvn = (2π)N/2 det A−1/2A−1
mn or

〈vmvn〉 = A−1
mn (18)

with

〈...〉 ≡ (2π)−N/2 det A1/2

∫
dve−

1
2v

TAv(...) (19)

This generalizes: differentiating four times,

〈vmvnvqvp〉 = A−1
mnA

−1
qp +A−1

mqA
−1
np +A−1

mpA
−1
nq (20)

2n-fold differentiation:

〈vi1vi2 ...vi2n〉 =
∑

pairings

A−1
ik1

ik2
...A−1

ik2n−1
ik2n

(21)

which is known as Wick’s theorem, here for real bosonic fields. Total number of terms: C2n =
(2n)!
n!2n = (2n− 1)!!, i.e. using pair exchange symmetry and exchange symmetry within each pair.
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Gaussian integration in more than one dimension: complex case Complex version of
(16): ∫

d(v†,v)e−v
†Av = πN det A−1 (22)

with v an N -dimensional complex vector, d(v†,v) ≡
∏N
i=1 d<vid=vi, and A a complex matrix

with positive definite Hermitian part.

Generalization of (22):∫
d(v†,v)e−v

†Av+w†·v+v†·w′ = πN det A−1ew
†A−1w′ (23)

with w,w′ independent vectors in general.

Averages of components: differentiating this twice, ∂2
w′mw̄n

(...)|w=w′=0 gives

〈v̄mvn〉 = A−1
nm (24)

where 〈...〉 ≡ π−N det A
∫
d(v†,v)e−v

†Av(...).

For 2n components: Wick’s theorem for complex bosonic fields:

〈v̄i1 v̄i2 ...v̄invj1vj2 ...vjn〉 =
∑
P

A−1
j1iP1

...A−1
jniPn

. (25)

Total number of terms: Cn = n!.
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1 Classical wanderings

1.1 Brownian motion

Mankind has long been aware of the seemingly random motion of particles embedded within a
fluid. For the historians among you, it might be interesting to remember that the Roman poet
Lucretius described it in one of his scientific poems ‘On the Nature of Things’ (circa 60 BC).
More importantly, it was qualitatively described in more scientific terms (through microscope
observations) by Robert Brown in 1827. One of Albert Einstein’s three famous papers of 1905
[1] is entirely devoted to precisely this subject, and helped establish Brownian motion as the
definitive proof of the atomic hypothesis. Einstein was hereby able to determine the size of atoms,
and Avogadro’s number.

We will here focus on a somewhat simplified scenario which tends to Brownian motion in a
certain limit. This is the problem of a random walker on a regular lattice. Besides Brownian
motion, the random walker problem has extremely many applications besides physics, for example
in ecology, biology or economics.

1.2 The random walker

Our objective in this section will be limited to making some quantitative statements about random
walks. Being by definition random, such a walk of course cannot be described exactly, and our
objectives will thus be limited to making probabilitic statements.

We will begin by considering the most easily treatable case of a random walker moving in a
d-dimensional hypercubic lattice. Let us thus consider d-dimensional Euclidean space, with basis
unit vectors

n̂µ, µ = 1, ..., d, such that n̂µ · n̂ν ≡
d∑
i=1

n̂iµn̂
i
ν = δµν . (26)

Let us denote the lattice spacing as a. Our lattice is then defined by all points

La ≡ {r} such that r = a

d∑
µ=1

nµn̂µ, nµ ∈ N. (27)

Each point has 2d neighbours; this is known as the coordination number of this lattice, and we
will denote it as cLa .

Let us now imagine that we are observing a walker obeying the following rules:1

• rule 1: at each time interval δt, the walker takes one step on the lattice;

• rule 2: the direction each step is taken in, is uniformly distributed between the cLa possible
choices.

Examples of paths traced out by such a walker are provided in Fig. 1 for the case of a two-
dimensional square lattice. Some comments are immediately in order. The meanderings of the
walker away from the origin are slow: some sites are visited many times over (the number of times
a site is visited is not visible in the plots, but can be imagined) and the path therefore tends to be
divided into dense clusters where the wanderer keeps retracing his steps, linked by narrow bridges
representing rarer chance instances where the wanderer follows more or less one direction for a
while. Very occasionally, the walker wanders much further, as if a drift current was present (e.g.
the bottom right instance of Fig. 1). These instances are rare events.

The second rule is an expression of the Markov property of the random walk, namely that
the status of the system at a point in time is sufficient to determine its status at the next time

1The commonly made analogy to a drunken wanderer is entirely inappropriate: our walker is a very predictable
being, since it certainly makes one step at each unit of time with perfectly uniformly random choice of direction.
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Figure 1: Examples of random walks on the square lattice. Each walk consists of 1000 steps.

increment. Processes with discrete time evolution obeying the Markov property are commonly
referred to as Markov chains.

The random walker, despite following extremely simple rules, displays rather interesting be-
haviour (you can view this as an example of emergence: simple rules yield rich physics). We can
ask ourselves very many questions about the walker. Most fundamental of all is:

• What is the conditional probability Pr1,t1|r0,t0 of finding the walker at site r1 at time t1 =
t0 + sδt (s being the number of steps taken) given that it was at r0 at time t0?

In theory, a detailed answer to this question is sufficient to answer all possible questions one might
have about the random walker, since these will be expressible as functions of the Pr1,t1|r0,t0 .

We can state a few obvious facts. We consider a (spatial and time) translationally-invariant
system, so the probabilities are unchanged by a constant shift of coordinates:

Pr1−r2,t1|r0−r2,t0 = Pr1,t1|r0,t0 = Pr1,t1+t2|r0,t0+t2 . (28)

We can therefore view the origins r0, t0 as being fixed from now on. By definition, at time t0, our
walker is standing at r0:

Pr1,t0|r0,t0 = δr1,r0 . (29)

Second, all probabilities are positive-definite and bounded:

0 ≤ Pr1,t1|r0,t0 ≤ 1 ∀ r1, ∀ t1 ≥ t0. (30)

Third, the walker must be somewhere, so the probabilities obey the ‘sum rule’∑
r1∈La

Pr1,t1|r0,t0 = 1 ∀ t1 ≥ t0. (31)

7



From PI to FT 2017 (J-S Caux) 1 CLASSICAL WANDERINGS

There are some further obvious facts that can be stated. For example, the probability must
vanish if the time is not sufficient to go from r0 to r1 in time t1 − t0:

Pr1,t1|r0,t0 = 0 if |r1 − r0| >
a

δt
(t1 − t0) (32)

(meaning that we can interpret a/δt ≡ vmax as an effective maximal (light) velocity), so the time
dynamics in our system is causal: the walker will not be nonlocally teleported around the lattice
under time evolution. As we will see, this effective light velocity is not very meaningful: the
overwhelming majority of random walks will propagate at a diffusion velocity vd � vmax.

Another statement one could make is that since our hypercubic lattice is bipartite2, the prob-
ability possesses a ‘parity’ feature whereby it is alternately (non)vanishing on each sublattice.
This is an example of a non-universal statement: it relies on the microscopic features of the
lattice considered here, and will not be true of other lattices. The most appealing way of thinking
which we will pursue focuses of course on the universal features. What is meant by this? Things
that do not depend on microscopic details, but rather apply to whole classes of situations. As a
simple illustration here, consider the problem of the random walker but on different lattices, say
the triangular and honeycomb ones. The triangular lattice is not bipartite; the honeycomb one is.
Looking at Fig. 2, in which example paths are given for triangular, square and honeycomb lattices,
one can observe a rather striking similarity. This similarity becomes exact in the so-called scaling
limit taking the time interval (number of steps) and distance scale (lattice spacing) respectively
to ∞ and zero in a meaningful way (which we will do later for the square lattice). The concept of
scaling is illustrated in Fig. 3.

1.2.1 Time evolution

Let us now focus on the time dependence of the occupation probabilities. Our starting point is
the implementation of the second rule of the walker, namely the one-time-step relation

Pr1,t1+δt|r0,t0 =
1

cLa

∑
r′n.n.r1

Pr′,t1|r0,t0 (33)

where we write the requirement that r′ be nearest neighbour to r1 as r′n.n.r1. For our hypercubic
lattice, this is specialized to

Pr1,t1+δt|r0,t0 =
1

2d

∑
σ=±1

d∑
µ=1

Pr1+aσn̂µ,t1|r0,t0 . (34)

We here recognize the discretized version of the Laplacian operator, which we will denote ∇2
a and

define as

∇2
afr ≡

1

a2

d∑
µ=1

[
fr+an̂µ + fr−an̂µ − 2fr

]
. (35)

This scales to the usual Laplacian in the continuum limit: if the lattice-defined fr scales to a
differentiable function f(r), then

lim
a→0
∇2
afr = ∇2f(r). (36)

We can thus rewrite our one-time-step relation as

Pr1,t1+δt|r0,t0 − Pr1,t1|r0,t0 =
a2

2d
∇2
aPr1,t1|r0,t0 . (37)

This is simply a lattice version of the continuum diffusion equation (in reality here: the heat
equation) (

∂

∂t
−D ∇2

)
P (r, t) = 0, (38)

2That is: it can be divided into two sublattices A and B such that all nearest neighbours of r ∈ A are in B, and
vice-versa.
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Figure 2: Examples of random walks on the triangular (top), square (middle) and honeycomb
(bottom) lattices. Each walk consists of 1000 steps. The similarity between these three instances
is an illustration of the concept of universality.
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Figure 3: Illustration of scaling in random walks. The top left walk has 125 steps of length 32 on
the two-dimensional square lattice. Each subsequent curve has four times as many steps of half
the length. The mean distance from the origin reached by the walker remains the same.

in which D (the diffusion constant) parametrizes the efficiency of the diffusion (the higher D is,
the quicker an initial state diffuses). Here, this constant is taken as the limiting value (assumed
to be finite, and thus choosing a2 ∝ δt in the scaling limit)

D = lim
a→0
δt→0

a2

2dδt
. (39)

Getting back to our problem of describing the random walker, given an initial configuration of
probabilities

Pr,t0|r0,t0 ≡ Pr,t0 , (40)

the probability configuration at all times t1 > t0 is thus obtainable from the solution of (37), which
can in turn easily be obtained by simple Fourier transformation. Adopting the convention

fr = ad
∫ π

a

−πa

ddk

(2π)d
eik·rf(k), f(k) =

∑
r∈La

e−ik·rfr, (41)

we can write our single-site-localized initial condition as

Pr,t0|r0,t0 = δr,r0
, Pk,t0|r0,t0 = e−ik·r0 . (42)

The one-time-step equation (37) becomes

Pk,t1+δt|r0,t0 =
1

d

d∑
µ=1

cos(kµa) Pk,t1|r0,t0 . (43)

Using this, we can immediately solve (37) for arbitrary t1 ≥ t0 as

Pr1,t1|r0,t0 = ad
∫ π

a

−πa

ddk

(2π)d
eik·(r1−r0)

[
1

d

d∑
µ=1

cos(kµa)

] t1−t0
δt

. (44)
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This is the full, exact solution of our problem: no approximations have been made, so this equation
is exact for all values of r1 and t1 ≥ t0. In particular, the fact that all probabilities are positive
can be easily verified.

This is all very nice, but the fact remains that (44) is a bit unwieldy and does not make the
physics very transparent. The question thus now becomes: can this equation be further simplified,
at least for the most likely paths that our walker can follow?

1.2.2 Continuum limit

Let us consider taking the limit δt → 0. For a fixed time interval t1 − t0, the exponent of the
square bracket in (44) becomes very large. This term would only survive in the limit δt → 0 if
we were to simultaneously scale kµa to zero. For finite momenta, this means taking the lattice
spacing to zero (which justifies calling what we are doing here a ‘continuum limit’). Expanding
the cosine under this assumption gives[

1

d

d∑
µ=1

cos(kµa)

] t1−t0
δt

=

[
1− a2

2d
k2 + ...

] t1−t0
δt

→ e−(t1−t0) a2

2dδtk
2

(45)

in which we now explicitly recognize our diffusion constant D (39). In this limit, the probability
density (per unit volume) of finding the particle around r1 at time t1 scales to a smooth function
of space and time coordinates:

p(r1, t1|r0, t0) ≡ lim a−dPr1,t1|r0,t0 =

∫ ∞
−∞

ddk

(2π)d
e−(t1−t0)Dk2+ik·(r1−r0)

=
1

[4πD(t1 − t0)]
d
2

exp

[
− |r1 − r0|2

4D(t1 − t0)

]
. (46)

From this equation, we immediately see that after a time interval t1− t0, the typical distance from
the origin at which we find our walker is

|r1 − r0| ∼ (t1 − t0)ν , ν =
1

2
. (47)

This is our first example of a critical exponent. Here, it is the Hausdorff dimension of the
curve: the path has total length ∼ t1 − t0, but it is confined in a ball of radius ∼ (t1 − t0)

1
2 .

Summarizing, this probability density is a positive-definite symmetric kernel which satisfies
the normalization condition ∫

ddr p(r, t|r0, t0) = 1, (48)

and the diffusion equation (
∂

∂t
−D∇2

)
p(r, t|r0, t0) = 0 (49)

with initial condition
p(r1, t0|r0, t0) = δ(d)(r1 − r0). (50)

Another interesting equation obeyed by the kernel originates from the fact that at any inter-
mediate time, the walker must be somewhere. This completely trivial statement translates into
the following nontrivial composition property∫

ddr1 p(r2, t2|r1, t1) p(r1, t1|r1, t0) = p(r2, t2|r0, t0), ∀ t1 such that t2 > t1 > t0. (51)

Said otherwise, our walker has no memory whatsoever. The diffusion process is purely local in
time (in other words: there are no retarded effects), as per the (microscopic) Markovian dynamics
highlighted previously.
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Exercise: rare events. We have seen before that the occupation probability vanishes outside
of a ‘light cone’ defined by the maximal velocity vmax = a/δt. What is the probability of our
wanderer diffusing to a distance |r1 − r0| = vmax(t1 − t0), as a function of t1 − t0?3

Exercise: isotropy of the diffusion. One feature which is manifested by the diffusion kernel
we have obtained is that it is isotropic in space, namely that the diffusion occurs in precisely the
same way irrespective of direction. We however started from a hypercubic lattice, which manifestly
has 2d preferred directions. Can you explain what is going on?

Exercise: one step towards universality. Solve the problem of the random walker on the
triangular lattice explicitly. Show that the continuum limit you obtain is precisely the same as
the one we obtained for the square lattice.

1.2.3 Green’s function

A simple question we can now ask (and answer!) is the following: how much time does our walker
spend on a given point r1? This is simply given by explicitly summing (44)

∞∑
n=0

Pr1,t0+nδt|r0,t0 = ad
∫ π

a

−πa

ddk

(2π)d
eik·(r1−r0)

1− 1
d

∑d
µ=1 cos(kµa)

≡ Gr1−r0 . (52)

As can directly be seen from (34), this quantity obeys the equation

Gr1−r0 = δr1,r0 +
1

2d

d∑
µ=1

[
Gr1+an̂µ−r0

+ Gr1−an̂µ−r0

]
(53)

or more economically in terms of our lattice Laplacian

−∇2
aGr1−r0

=
2d

a2
δr1,r0 . (54)

The kernel G is thus the Green’s function of (a constant times) the Laplacian, namely it is the
kernel which inverts this operator4. The physical interpretation of the Green’s function is thus
quite direct for our random walker: for an infinitely long walk, Gr1−r0

is the total number of time
steps spent by our walker at r1, given that it started at r0.

1.2.4 Divergences

Simply by looking at the integral representation (52) in the region of small momenta, we see that
the Green’s function is given by a convergent integral for d > 2. For d = 2, we see that we get a
logarithmic divergence (in terms of a smallest allowable wavelength/infrared cutoff kmin which we

would like to put identically to zero) of the form
∫
d2k
k2 ∼ − ln kmin; the d = 1 case diverges like

1/kmin. This is simply a manifestation of the fact that in d ≤ 2, the walker left to wander for an
infinite time, will tend to spend an infinite amount of time at each point of the lattice.

Infinities make the interpretation of our results problematic, and we must find a way to deal
with them. You will no doubt have heard that dealing with infinities is the main object of the
theory of renormalization. Handling the simple infinities we encounter here can thus be seen as
a warm-up for more advanced dealings with renormalization.

3For your information: this is the simplest case of a more general statement known as the Lieb-Robinson
bound [2], which states that in a system with local interactions, correlations between objects relatively positioned
outside an effective light-cone (defined by a finite group velocity characteristic of the system) vanish exponentially
with distance.

4The Green’s function of an operator is of course only defined modulo a function which is in the null space of
this operator. Consider here adding a (lattice) harmonic function fh(r) such that ∇2

afh = 0.
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Subtraction. The first way to deal with infinities is to... get rid of them by subtracting them
away. This is not as mindless as it may seem. Note first that, as a function of position, the
total time spent in one point is maximal at the origin. In other words, our Green’s function G is
maximal at r1 = r0. We can thus consider a Green’s function Gs (s for subtracted) which is finite
for all d by simply subtracting the (d-dependent, possibly infinity) constant G0:

Gsr1−r0
= Gr1−r0

− G0 = ad
∫ π

a

−πa

ddk

(2π)d
eik·(r1−r0) − 1

1− 1
d

∑d
µ=1 cos(kµa)

. (55)

Since we have merely subtracted a constant, this new kernel still obeys (54), but it is not positive
definite anymore. If fact, it is now negative definite.

Exercise: Green’s function in one dimension. Show that the subtracted Green’s function
in one dimension is exactly given by

Gsr1−r0
= −|r1 − r0|

a
. (56)

Derivation:

Gsr = a

∫ π
a

−π
a

dk

2π

eikr − 1

1− cos ka
= −a

∫ π
a

−π
a

dk

2π

sin2 kr

sin2 ka

[GR] 3.624.6
= −

r

a
.

Regularization. Another way of dealing with infinities is to introduce some sort of deformation
parameter in the theory which renders all sums or integrals finite. Here, the infinities came from
the fact that we are considering an infinitely long duration of the walk, our walker never getting
tired of hopping around. Let us thus add assume that our walker obeys the additional rule, to be
enforced with rule 1 and rule 2:

• rule 3: during each time step, with probability η, our walker gets exhausted, quits the game
and disappears from the lattice.

A more physical interpretation of this ‘exhaustible walker’ problem is for example to imagine that
our walker is a radioactive particle subject to decay.

Given such a finite probability of our walker disappearing at each time step, our probabilities
(now denoted by a superscript η) are now simply given by a time-dependent rescaling of our earlier
solution

P
(η)
r1,t1|r0,t0

= (1− η)
t1−t0
δt Pr1,t1|r0,t0 . (57)

Note that the sum rule now becomes∑
r1

P
(η)
r1,t1|r0,t0

= (1− η)
t1−t0
δt ∀ t1 ≥ t0. (58)

For this exhaustible walker, the Green’s function becomes

G(η)
r1−r0

≡
∞∑
n=0

(1− η)nPr1,t0+nδt|r0,t0 . (59)

We obviously have that our earlier Green’s function is given by the limit η → 0 of the exhaustible
walker Green’s function:

Gr1−r0
= lim
η→0
G(η)
r1−r0

. (60)
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Now however, the integral representation for G(η) converges for all η > 0 (we by definition neces-
sarily have 0 ≤ η ≤ 1). This representation is

G(η)
r1−r0

=
ad

1− η

∫ π
a

−πa

ddk

(2π)d
eik·(r1−r0)

1
1−η −

1
d

∑d
µ=1 cos(kµa)

(61)

and obeys the equation [
−∇2

a +m2
]
G(m)
r1−r0

=
2d

a2(1− η)
δr1,r0

(62)

where m can be interpreted as the effective mass (note that we now use the mass as superscript
label for the Green’s function). This is given here by

m2 ≡ 2d

a2

η

1− η
(63)

(which is indeed a positive quantity since 0 ≤ η ≤ 1) For our walker, the mass is thus related to
the rate of exhaustion our walker displays as he wanders.

In the scaling limit, we will also take the mass to be finite (this means that we should scale
η ∼ a2 ∼ δt). The proper scaling of the Green’s function is

Gm(r) ≡ lim
1

2dad−2
G(m)
r =

∫ +∞

−∞

ddk

(2π)d
eik·r

k2 +m2
(64)

this function obeying the equation[
−∇2 +m2

]
Gm(r − r0) = δ(r − r0), r ∈ Rd. (65)

Exercise: massive Green’s functions in d = 1, 2, 3.

a) Show that the 1d Green’s function is

Gm(r) =
e−m|r|

2m
(66)

so the correlation decays with distance on a scale given by the correlation length ξ = 1/m.

b) show that in the 2d case, the Green’s function becomes

Gm(r)|d=2 =

∫
d2k

(2π)2

e−ik·r

k2 +m2
=

1

2π
K0(m|r|) (67)

(where K0 is the modified Bessel function of the second kind), with limits

Gm(r)|d=2 ' −
1

2π
ln[
m

2
|r|], |r| � 1/m (68)

and

Gm(r)|d=2 '
1

2
(2πm|r|)−1/2e−m|r|, |r| � 1/m. (69)

c) show that in the 3d case, we get

Gm(r)|d=3 =

∫
d3k

(2π)3

e−ik·r

k2 +m2
=
e−m|r|

4π|r|
. (70)

In the d = 2, 3 cases, the Green’s function thus diverges at short distance, but in all cases
d = 1, 2, 3 it decays exponentially at large distances, with characteristic correlation length ξ = 1/m.
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Derivation: Answers: Explicit calculations for the free propagators

a) 1d: By simple contour integration,

Gm(r) =

∫
dk

2π

e−ikr

(k + im)(k − im)
=
e−m|r|

2m
.

b) 2d:

Gm(r)|d=2 =

∫
d2k

(2π)2
e−ik·r

k2 +m2
=

1

4π2

∫ 2π

0
dθ

∫ ∞
0

dkk
e−ik|r| cos θ

k2 +m2

=
1

2π2

∫ ∞
0

dk
k

k2 +m2

∫ π

0
dθ cos(k|r| cos θ)

We can now use the identity (c.f. Gradshteyn & Ryzhik 3.715.18)∫ π

0
dθ cos(z cos θ) cosnθ = π cos

nπ

2
Jn(z)

where Jn is the n-th Bessel function of the first kind. Substituting, we get

Gm(r)|d=2 =
1

2π

∫ ∞
0

dk
kJ0(k|r|)
k2 +m2

=
1

2π
K0(m|r|)

in which we have used GR 6.532.4, ∫ ∞
0

dk
kJ0(kr)

k2 +m2
= K0(mr)

in which Kn is the modified Bessel function of the second kind (here with n = 0).
The limits for small and large values of |r| can be obtained from the asymptotic forms of Bessel functions at

small argument,

K0(z) = − ln
z

2
I0(z) +

∞∑
k=0

z2k22k(k!)2ψ(k + 1) GR 8.447.3,

I0(z) =

∞∑
k=0

(z/2)2k

(k!)2
GR 8.447.1,

or at large argument

Kν(z) =

√
π

2z
e−z [1 + ...] GR 8.454.6.

c) 3d:

Gm(r)|d=3 =
1

(2π)3

∫ 2π

0
dφ

∫ π

0
dθ sin θ

∫ ∞
0

dkk2
e−ik|r| cos θ

k2 +m2
.

Let z = cos θ. We get

Gm(r)|d=3 =
1

4π2

∫ ∞
0

dk
k2

k2 +m2

∫ 1

−1
dze−ik|r|z =

1

2π2|r|

∫ ∞
0

dk
k sin(k|r|)
k2 +m2

This integral is tabulated,∫ ∞
−∞

dx
r sin(ax)

x2 + b2
= πe−ab a > 0,<b > 0 GR 3.723.4

which gives the final result.

15



From PI to FT 2017 (J-S Caux) 1 CLASSICAL WANDERINGS

1.3 The path integral

It is straightforward to express the properties of the motion of our random walker in terms of
sums over the paths which can be taken. We can immediately write

Pr1,t1|r0,t0 =
Number of paths joining r0 to r1 with t1−t0

δt steps

Total number of paths out of r0 with t1−t0
δt steps

. (71)

Let us work directly in the scaling limit. From (46), we have that for initial and final positions
and times ri, ti and rf , tf , the probability density of finding the particle was given by the exact
(in the scaling limit) expression

p(rf , tf |ri, ti) =
1

[4πD(tf − ti)]
d
2

exp

[
− |rf − ri|2

4D(tf − ti)

]
. (72)

On the other hand, we have the composition property (51) which can be concatenated. Let us
imagine that we split our time interval tf − ti into N equal intervals of duration

tf−ti
N ≡ ∆t

(identifying r0 ≡ ri, t0 ≡ ti and rN ≡ rf , tN ≡ tf ), and apply (51) at each N − 1 intermediate
time step:

p(rf , tf |ri, ti) =

∫ N−1∏
n=1

ddrnp(rf , tf |rN−1, tN−1)p(rN−1, tN−1|rN−2, tN−2)...p(r1, t1|ri, ti).

(73)
In the limit N → ∞, the time steps ∆t become infinitesimal (remember that we are working
directly in the scaling limit: at each time step here, there are still infinitely many steps being
taken on the original lattice, in other words we still have δt/∆t = 0). For an infinitesimal time
step, we can write

p(rn+1, tn+1|rn, tn) −→
tn+1−tn=∆t→0+

1

[4π∆t]
d
2

exp

[
−∆t

4D

∣∣∣∣∆r(tn)

∆t

∣∣∣∣2
]

(74)

where
∆r(tn)

∆t
≡ rn+1 − rn

∆t
→ dr(t)

dt
. (75)

We can thus write our probability as the path integral

p(rf , tf |ri, ti) =

∫
r(ti)=ri
r(tf )=rf

Dr(t) exp

[
− 1

4D

∫ tf

ti

dt

∣∣∣∣dr(t)

dt

∣∣∣∣2
]

(76)

where the path integral measure is here defined as∫
r(ti)=ri
r(tf )=rf

Dr(t)F [r(t)] ≡ lim
N→∞

[
N

4πD(tf − ti)

]Nd/2 ∫ N−1∏
n=1

drnF ({rn})

∣∣∣∣∣ r0=ri
rN=rf

(77)

where F [r(t)] is the functional corresponding to the function F ({rn}).
For the exhaustible walker, we simply use (57) and the limits (recalling (39))

lim(1− η)
tf−ti
δt = lim

(
1− a2

2d
m2

) tf−ti
δt

= e−(tf−ti)Dm2

(78)

so we simply have

pm(rf , tf |ri, ti) = e−(tf−ti)Dm2

p(rf , tf |ri, ti). (79)

16



From PI to FT 2017 (J-S Caux) 1 CLASSICAL WANDERINGS

For the Green’s function, we have

Gm(r) = lim
a2

2d

∞∑
n=0

pm(r, nδt|0, 0) (80)

and we therefore obtain the path integral representation

Gm(r) = D

∫ ∞
0

dt

∫
r(0)=0
r(t)=r

Dr(t′) exp

[
−
∫ t

0

dt′
(
Dm2 +

1

4D
|ṙ(t′)|2

)]
. (81)

A few comments are in order. Why did we even bother to define such a path integral, given
that we had the exact solution for any initial/final positions in equation (46)? The reason is of
course that while we were able to provide such an exact solution for this particular case, this
is by no means the usual situation. In most circumstances, we cannot solve the time evolution
equations exactly, and must be content with some form of approximation. The time evolution
is implemented by an evolution equation of the form (49) but generically containing other terms
whose effects cannot be tracked exactly. One then relies on approximations (for example that the
relevant dynamics is restricted to some low-energy/slow-changing configurations). Dividing the
time evolution into microscopic time steps as we have done here is then still meaningful: expressions
corresponding to (81) can always be written down irrespective of how our time evolution occurs,
whereas solutions like (46) are more often than not too much to wish for.

1.4 Visit and return probabilities

Let us now return to the random walker on the hypercubic lattice (before taking the scaling limit),
and address a slightly different question: what is the probability Πr,t that the walker has trodden
at least once on site r by time t, given that it started at r0 ≡ 0 at time t0 ≡ 0? For the special
case r = r0, this is known as the return probability5.

The probabilities Pr,t
6 are not exactly what we are looking for (though it is intimately related):

summing these over all times would give the mean time spent at site r. Instead, let us define the
intermediate quantities Pr,t;i of being at site r for the i-th time at time t. We then have that

Pr,t = δr,0δt,0 +

∞∑
i=1

Pr,t;i. (82)

Note that only a finite number of terms contribute to this sum, since Pr,t;i = 0 for i > t/δt. Note
also that our definitions are such that Pr,0;i = 0. Since an i+ 1-th visit necessarily follows as i-th
visit, we can write the recurrence relation (using homogeneity of the walk in space and time)

Pr,t;i+1 =
∑

t1+t2=t

Pr,t1;iP0,t2;1. (83)

The summation of this relation over i = 1, ...,∞ then yields

Pr,t − Pr,t;1 − δr,0δt,0 =
∑

t1+t2=t

Pr,t1P0,t2;1 − δr,0Pr,t;1. (84)

The probability of having visited site r at least once is then

Πr =

∞∑
t=0

Pr,t;1. (85)

5In here and all further considerations, we assume that the walker has left the origin, so we exclude the initial
state at the initial time.

6Dropping the r0, t0 arguments for notational simiplicity. Remember that our random walk is homogeneous in
space and (discrete) time.
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Treating the more general case of the exhaustible walker, we can simply replace all the P by P (η),
giving for example

P
(η)
r,t − P

(η)
r,t;1 − δr,0δt,0 =

∑
t1+t2=t

P
(η)
r,t1P

(η)
0,t2;1 − δr,0P

(η)
r,t;1. (86)

Using

Π(η)
r =

∞∑
t=0

P
(η)
r,t;1, Πr = lim

η→0
Π(η)

r , (87)

and summing over time gives

G(η)
r = δr,0 + [1− δr,0] Π(η)

r + G(η)
r Π

(η)
0 . (88)

This gives us two very aesthetic equations: first of all, the return probability is simply expressed
in terms of the Green’s function at zero distance:

Π
(η)
0 = 1− 1

G(η)
0

. (89)

Second, the visit probability at site r is simply given by the ratio of the Green’s function at that
point to that at the origin:

Π(η)
r =

G(η)
r

G(η)
0

, r 6= 0. (90)

Some comments are in order. We know that for d ≤ 2, limη→0 G(η)
r → ∞ uniformly for any

r, so Π(0) → 1 and Π(r) → 1 for any r. For d > 2 the return probability is less than one, and
decreases as 1/d for large d.

Exercise: return probability for large d. Obtain an explicit expansion in 1/d of the Green’s
function at the origin, and thus of the return probability, starting from the representation (52).
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2 The Ising model

2.1 Historical bullet points

What has now come to be known as the Ising model was in fact formulated by W. Lenz in 1920
as a model for a ferromagnet. His student E. Ising treated the one-dimensional case in 1925 [3].
The two-dimensional case was solved (for zero field) by Lars Onsager in 1944 [4], this feat still
being recognized as one of the towering achievements in classical statistical mechanics. Onsager’s
exact solution paved the way for the refinement of our understanding of critical phenomena in
general. A.B. Zamolodchikov solved the two-dimensional, nonzero-field case in 1989. Amazingly,
the three-dimensional Ising model remains unsolved, irrespective of whether the field vanishes or
not.

The Ising model’s Hamiltonian is arguably the simplest system of interacting spins on a lattice
which one can imagine. Consider a generic lattice. Each lattice site i carries a spin variable si
taking values si = ±1. Spins are pairwise coupled and subjected to an external field B:

H =
1

2

∑
i,j

Jijsisj −B
∑
i

si (91)

where the spin couplings are assumed to be nonvanishing only for nearest neighbour pairs,

Jij =

{
J , i, j nearest neighbours,
0 otherwise

(92)

If J < 0, the coupling induces ferromagnetic correlations between neighbouring spins. On the
contrary, if J > 0, antiferromagnetic configurations are preferred. The first fundamental question
which we would like to ask is whether the system develops some form of spin order at low temper-
atures. Physically, we know that such spin ordering exists: consider for example the case of iron,
which develops a spontaneous magnetization at low temperatures.

Such thermodynamic questions are best addressed using the standard tools of equilibrium
statistical mechanics. We will thus work our way towards the evaluation of the partition function
of the Ising model, which is given by the full configurational sum

ZIsing =
∑
{si}

exp

β
B∑

i

si −
1

2

∑
ij

Jijsisj

 . (93)

The physics of the model will greatly depend on the dimensionality. We expect higher-dimensional
versions of the model to be more ‘rigid’, namely that the tendency to order should be greater on
higher-dimensional lattices. We will here consider the simplest cases of one- and two-dimensional
lattices.
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2.2 The one-dimensional Ising model

The evaluation of the partition function for the one-dimensional case is completely straightforward.
Taking our lattice sites to be labelled by the integer i = 0, ..., N−1 and imposing periodic boundary
conditions sN ≡ s0 and adopting the ferromagnetic convention

J ≡ −ε, ε > 0, (94)

we can write

H =

N−1∑
i=0

Hsi,si+1 , Hsi,sj = −ε sisj +
B

2
(si + sj). (95)

The partition function can then be written

Z =
∑
{si}

N−1∏
i=0

exp [−βH(si, si+1)] = Tr TN (96)

where we have defined the transfer matrix (viewing the spin values as labels of the matrix
coordinates)

Tss′ ≡ exp [−βHs,s′ ] =

(
eβ(ε+B) e−βε

e−βε eβ(ε−B)

)
. (97)

Since T is positive symmetric, it has real positive eigenvalues and can be diagonalized by an
orthogonal transformation. Denoting the two eigenvalues as λ0 and λ1 with λ0 > λ1, we have

lim
N→∞

1

N
ln Tr TN = lim

N→∞
1

N
ln
[
λN0 + λN1

]
= lnλ0. (98)

This largest eigenvalue is easily shown to be

λ0 = eβε
[
coshβB +

√
cosh2 βB − (1− e−4βε)

]
. (99)

This gives the free energy per site

f = −ε− 1

β
ln

[
coshβB +

√
cosh2 βB − (1− e−4βε)

]
. (100)

The average magnetization per site is

〈s〉 = −
(
∂f

∂B

)∣∣∣∣
T

=
sinhβB√

cosh2 βB − (1− e−4βε)
. (101)

In the zero field case, the partition function and free energy per site become

Z = 2N coshN (βε), f = − 1

β
ln [2 cosh(βε)] . (102)

The zero magnetic field limit is such that 〈s〉 = 0 for any value of β, and the one-dimensional
Ising model therefore never exhibits a phase transition to a ferromagnetic state (in other words:
the one-dimensional Ising model never spontaneously magnetizes).7

The two-dimensional Ising model cannot be solved using the simple procedure we have just
applied to the one-dimensional case. We will follow a diagrammatic route proposed by Kac and
Ward [5] since it involves a nicely illustrative path summation-like logic. Note that this is not the
method Onsager used, which was based on a fermionic representation of the problem. What we
are about to do is inuitively much simpler to understand.

7History says that this negative result had a severe impact on Ising, who never published another scientific
paper.
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2.3 High-temperature expansion and loop summations

Our reasonings will be based on the observation that at high temperatures (so small β), the
partition function of the Ising model can be represented as the formal series

ZIsing =
∑
{si}

e−βH({si}) =
∑
{si}

∞∑
n=0

[−βH({si})]n

n!
=

∞∑
n=0

(−1)n

n!

∑
{si}

[βH({si})]n. (103)

Specializing to the zero-field case, we can start from the representation

ZIsing =
∑
{si}

∏
〈i,j〉

eβεsisj , ε ≡ −J . (104)

Using the simple identity

e±A = coshA± sinhA = coshA(1± tanhA) (105)

then allows to rewrite the partition function as

ZIsing =
∑
{si}

∏
〈i,j〉

cosh(βε) [1 + sisj tanh(βε)] = [cosh(βε)]Nz/2
∑
{si}

∏
〈i,j〉

(1 + sisjv) (106)

where the parameter
v ≡ tanh(βε) (107)

will be our (small) expansion parameter. The polynomial∏
〈i,j〉

(1 + sisjv) = 1 + v
∑
〈i,j〉

sisj + v2
∑
〈i,j〉

∑
〈k,l〉

sisjsksl + ... (108)

has terms which can be pictorially represented by drawing a line between sites i and j if sisj
appears in the product of spins. The large temperature expansion thus becomes a summation
over all possible line drawings which can be made on the lattice considered. Now the crucial fact
is that upon performing the configurational sum

∑
{si}, a large number of terms in the expansion

simply vanish, namely all those where at least one spin is appearing an odd number of times.
Said otherwise, the only drawings which do not vanish upon performing the configurational sum
are those associated to closed loops where each spin is ‘visited’ by an even (explicitly: 0, 2, ...,
z) number of line segments. We thus obtain that the partition function of the Ising model (in
arbitrary dimension) can be written as

ZIsing = [cosh(βε)]Nz/22N
∞∑
l=0

g(l)vl (109)

where g(l) is the number of loops of l segments which can be drawn on the lattice. We adopt the
convention that g(0) = 1. Also, by definition, g(l) = 0 for l > z

2N .
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2.4 The two-dimensional square lattice Ising model

Let us now obtain the partition function for the two-dimensional Ising model via the high-
temperature expansion defined above. We specialize to a square lattice of width L in both di-
rections. The total number of sites is thus simply N = L2. For definiteness, we impose periodic
boundary conditions in both directions.

2.4.1 Counting loops on the square lattice

First, a bit of terminology. A closed path of l links is an arrowed path going from one site back
to the same site in l steps. A loop is a pattern of links, each lattice point seeing an even number
of links. Example: a ring of l links represents 2l closed paths, but is only one loop.

A closed path is called connected if it is formed by a single body of links, and is otherwise
called disconnected. Let us write the number of closed, connected paths of length l as h(l). For
convenience, we define a function (whose aim is to give us the number of distinct connected loops)
D(l) as

D(l) ≡ 1

2l
h(l). (110)

The total number of loops should be expressible in terms of the number of distinct connected
loops. We should be able to write something like

g(l)
?
=

l∑
n=1

1

n!

∑
l1+...+ln=l

D(l1)...D(ln). (111)

There is however a problem with this simple construction. Namely, some configurations are
overcounted. Consider for example the paths shown in Fig. 4 which contribute to g(8). These
three distinct patterns should however be associated to a single loop contribution in a proper
counting. Similarly, Fig. 5 shows four patterns contributing to a forbidden loop in the sum for
g(8).

Figure 4: Three patterns contributing to g(8) and which should really be associated to a single loop
(this loop being allowed in the expansion of the partition function). The total phases associated
to each are respectively +1 (closed loop, one crossing), −1 (one closed loop, no crossings) and +1
(two closed loops). The sum of these three thus gives a contribution of total weight 1.

To correct for this overcounting, we will modify our definition of D(l) in such a way that
different closed paths obtain an amplitude which will effectively ‘cancel off’ the extraneous terms.
Explicitly, we will associate a left turn with a phase ei

π
4 , and a right turn with a phase e−i

π
4 .

The amplitude of a given path is then the product of the phase factors at each turn of the path.
A non-crossing closed loop therefore obtains a phase −1, whereas a single-crossing path (like a
‘figure-of-eight’ one) gets phase +1. This generalizes: paths with even/odd numbers of crossings
get −1/+1 phases.

This idea is implemented in the actual calculation by introducing a matrix M with elements
Mij being nonzero if it is possible to link sites i and j by a single line segment. Going further,

(M l)ij will be nonzero only if it is possible to link sites i and j by l line segments. Conveniently,
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Figure 5: Four contributions to the same loop (this loop is forbidden in the partition function
expansion). The phases are here respectively +1, +1, −1 and −1. The total contribution thus
cancels.

the rules for matrix multiplication mean that if we give weight 1 to each path, the matrix element
(M l)ij will be proportional to the number of paths linking sites i and j by l line segments. We
have to include our phases however; since there are four different directions for getting to and
leaving a site, we view each element of matrix M as a 4 × 4 matrix mαβ

ij with α, β = 0, ..., 3
labelling the entry/exit directions. Labelling 0 ≡ E, 1 ≡ N , 2 ≡ W , 3 ≡ S, we have (using our
phase conventions, and using i− j as subindex)

m(−1,0) =


1 0 0 0

e−i
π
4 0 0 0

0 0 0 0
ei
π
4 0 0 0

 , m(1,0) =


0 0 0 0
0 0 ei

π
4 0

0 0 1 0
0 0 e−i

π
4 0

 ,

m(0,−1) =


0 ei

π
4 0 0

0 1 0 0
0 e−i

π
4 0 0

0 0 0 0

 , m(0,1) =


0 0 0 e−i

π
4

0 0 0 0
0 0 0 ei

π
4

0 0 0 1

 . (112)

An example of these is illustrated in Fig. 6.

ij

e�i⇡
4

e+i⇡
4

Figure 6: Illustration of the construction of the m(1,0) matrix.

Now the diagonal elements (M l)ααii involve a summation of terms each representing a distinct
closed path going from/to site i in l steps (with entering direction α). The number of distinct
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connected loops we are looking for is thus

D(l) ≡ − 1

2l
Tr M l = − 1

2l

∑
i

Tr m
(l)
ii (113)

(where the first trace is over the 4N indices of the M matrix, and the second one over the 4 indices
of the m matrices), where we have included a factor −1 to correct for the fact that a simple closed
loop comes with this factor.

The partition function can be written in terms of D(l) as

ZIsing = [cosh(βε)]Nz/22N

[
1 +

∞∑
l=1

vl
l∑

n=1

1

n!

∑
l1+...+ln=l

D(l1)...D(ln)

]

= [cosh(βε)]Nz/22N

[
1 +

∞∑
n=1

1

n!

[ ∞∑
l=1

D(l)vl

]n]
= [cosh(βε)]Nz/22N exp

[ ∞∑
l=1

D(l)vl

]
, (114)

with D(0) ≡ 1. Since M is diagonalizable, we can express D(l) in terms of its eigenvalues,

D(l) = − 1

2l

∑
i

Tr M l = − 1

2l

4N−1∑
α=0

λlα. (115)

This result in turn allows us to write the partition function as

ZIsing = [cosh(βε)]Nz/22N exp

[
−

4N−1∑
α=0

∞∑
l=1

λlαv
l

2l

]
= [cosh(βε)]Nz/22N

∏
α

(1− vλα)
1
2 . (116)

Our last step thus consists in finding the eigenvalues of M . Because of translational invariance,
we have that each of its elements depends on the coordinate difference vector,

mij ≡ mi−j . (117)

Its Fourier coefficients are

Mq =
∑
j

mje
−iq·j , q =

2π

L
n, ni = 0, ..., L− 1. (118)

Explicitly, the M matrix becomes block diagonal in momentum, each momentum block being
given by

Mq =


Q−1

(1,0) Q−1
(0,1)e

iπ4 0 Q(0,1)e
−iπ4

Q−1
(1,0)e

−iπ4 Q−1
(0,1) Q(1,0)e

iπ4 0

0 Q−1
(0,1)e

−iπ4 Q(1,0) Q(0,1)e
iπ4

Q−1
(1,0)e

iπ4 0 Q(1,0)e
−iπ4 Q(0,1)

 , Qj ≡ e−iq·j . (119)

Instead of calculating the eigenvalues one by one and substituting them in the expression for the
partition function, let us instead directly calculate the product: in each momentum sector,

3∏
α=0

(1− vλq,α) = Det [vMq − 1] = (1 + v2)2 − 2v(1− v2) <
(
Q(1,0) +Q(0,1)

)
. (120)

This gives us the explicit exact expression

ZIsing = [cosh(βε)]Nz/22N
∏
q

(
(1 + v2)2 − 2v(1− v2) [cos q1 + cos q2]

) 1
2 (121)

for the partition function of the two-dimensional Ising model.
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Exercise: thermodynamic properties of the two-dimensional Ising model.
Show that in the thermodynamic limit, the free energy per site is:

βf = − ln 2− 1/2

(2π)2

∫ π

−π
dk1dk2 ln

[
cosh2(2βε)− sinh(2βε)(cos k1 + cos k2)

]
. (122)

Show that this gives the internal energy per site (u = d(βf)
dβ ) is

u = −ε coth(2βε)

(
1−

[
1− 2 tanh2(2βε)

] 2

π
K(k)

)
(123)

where K is the complete elliptic integral of the first kind

K(k) ≡
∫ π

2

0

dφ
1√

1− k2 sin2 φ
(124)

with elliptic modulus

k ≡ 2
sinh(2βε)

cosh2(2βε)
. (125)

Going further, show that the specific heat c = −β2 du
dβ is

c =
4kB
π

(βε coth(2βε))2
(
K(k)− E(k)− sech2(2βε)

[π
2
− (1− 2 tanh2(2βε))K(k)

])
(126)

in which E(k) is the complete elliptic integral of the second kind

E(k) ≡
∫ π

2

0

dφ

√
1− k2 sin2 φ. (127)

Exercise: phase transition and critical exponents.
The complete elliptic integral of the first kind K(k) diverges when k → 1. Show that this yields

the critical temperature

βc =
1

2ε
ln(1 +

√
2). (128)

Show that as the temperature approaches the critical value, the specific heat c diverges. What
kind of divergence is it?

Exercise: correlation functions of the one-dimensional Ising model.
Using the logic of transfer matrices, show that the spin-spin correlation function of the one-

dimensional Ising model is
〈s0sn〉 = tanhn(βε).

Rederive the same result using the high-temperature expansion.
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3 The Dirac-Feynman path integral

Let us now move to the realm of quantum mechanics. Instead of the time evolution being driven by
a stochastic process as in the case of Brownian motion, our system will now obey the deterministic
Schrödinger equation.

The path integral formulation of quantum mechanics was initiated by P.A.M. Dirac, but pushed
to new heights by R. P. Feynman. The book by Feynman & Hibbs contains a detailed exposition
of the method.

The path integral formulation of quantum mechanics possesses a number of advantages over
the standard formulation.

1. the classical limit (~→ 0) is clear

2. it provides road towards non-perturbative methods

3. it serves as a prototype for the functional field integral

4. it has many direct applications for systems with one degree of freedom.

Our starting point to formulate the path integral is to perform a formal integration of the
time-dependent Schrödinger equation:

i~∂t|Ψ〉 = Ĥ|Ψ〉 → |Ψ(t′)〉 = Û(t′, t)|Ψ(t)〉, Û(t′, t) = e−
i
~ Ĥ(t′−t). (129)

Considering the simplest situation in which we have a single particle evolving in a continuum inter-
val (with the position labeled by q), we can write the wavefunction in the real space representation
as

Ψ(q′, t′) = 〈q′|Ψ(t′)〉 = 〈q′|Û(t′, t)|Ψ(t)〉 =

∫
dq U(q′, t′; q, t)Ψ(q, t) (130)

where the time-evolution operator has matrix elements

U(q′, t′; q, t) = 〈q′|e− i
~ Ĥ(t′−t)|q〉 (131)

Since this matrix element represents the probability amplitude for a particle to propagate from
points q to point q′ in a time t′ − t, this is known as the propagator of the theory.

The basic idea behind Feynman’s path integral is to split the finite time interval into infinitesimal
chunks ∆t, such that t = N∆t with N � 1. The time evolution operator then factorizes into a
product of time-step operators,

e−
i
~ Ĥt =

[
e−

i
~ Ĥ∆t

]N
. (132)

Assuming that the Hamiltonian takes the form of the sum of a kinetic and a potential part,
Ĥ = T̂ + V̂ , we can factorize the time-step operator according to

e−
i
~ Ĥ∆t = e−

i
~ T̂∆te−

i
~ V̂∆t +O(∆t2) (133)

in which the O(∆t2) error is proportional to the commutator of T̂ and V̂ . The truncation of
this power-series expansion in ∆t thus makes sense if ∆t is much smaller than the reciprocal of
the matrix elements of this commutator. Since our number N of time slices can be chosen to be
arbitrarily large, the expansion formally converges.

The propagator can then be approximated by

〈qf |
[
e−

i
~ Ĥ∆t

]N
|qi〉 ' 〈qf |1Ne−

i
~ T̂∆te−

i
~ V̂∆t1N−1...11e

− i
~ T̂∆te−

i
~ V̂∆t|qi〉 (134)

26



From PI to FT 2017 (J-S Caux) 3 THE DIRAC-FEYNMAN PATH INTEGRAL

in which 1 are fixed time-slice resolutions of the identity operator, each being the product of
resolutions of the identity in q and p space,

1n = 1qn1pn =

∫
dqn|qn〉〈qn|

∫
dpn|pn〉〈pn| =

∫
dqndpn|qn〉〈pn|(〈qn|pn〉)

=

∫
dqndpn|qn〉〈pn|

e
i
~ qnpn

√
2π~

(135)

in which we have used the convention 〈p|q〉 = 〈q|p〉∗ = e−
i
~ qp/
√

2π~. Assuming that T̂ is diago-
nalized by states |p〉, and V̂ by states |q〉), we obtain

〈qf |e−
i
~ Ĥt|qi〉 '

∫ N∏
n=1

dqndpn√
2π~

e
i
~ qnpn〈qf |qN 〉〈pN |e−

i
~T (pN )∆te−i

i
~V (qN−1)∆t|qN−1〉 ×

×〈pN−1|e−
i
~T (pN−1)∆te−i

i
~V (qN−2)∆t|qN−2〉 × ...× |qi〉. (136)

The T and V exponentials are now simple numbers, and can be taken out of the bra-ket inner
products. Substituting again the projection coefficients 〈pn|qn−1〉 = e−

i
~pnqn−1/

√
2π~ in this

equation, we get

〈qf |e−
i
~ Ĥt|qi〉 '

∫ N−1∏
n=1

dqn

N∏
n=1

dpn
2π~

e−i
∆t
~

∑N−1
n=0 (T (pn+1)+V (qn)−pn+1

qn+1−qn
∆t )|qN=qF ,q0=qi . (137)

This is exact up to corrections of order [T̂ , V̂ ]∆t2/~2.

The remarkable thing about (137) is that the left-hand side, a quantum-mechanical transition
amplitude, is expressed purely in terms of (an integration over) classical phase-space variables
xn = (qn, pn). The constant ~, and the fact that we are summing a complex-valued integrand, are
the only leftovers of the original Schrødinger time evolution equation.

Let us now briefly discuss the behaviour of the integral (137). The first thing to notice is that rapid
fluctuations of the arguments xn as a function of n are strongly inhibited (since the integrand is
oscillatory). Contributions for which (qn+1− qn)pn+1 > O(~) tend to cancel each other because of
destructive interference. The only contributions which survive are from paths which are smooth
in space-time, which allows us to take the limit N → ∞ (keeping t = N∆t fixed) and rewrite
the product of phase-space integrals in terms of a path integral: the set of points {xn} becomes a
curve x(t), and

∆t

N−1∑
n=0

→
∫ t

0

dt′,
qn+1 − qn

∆t
→ ∂t′q|t′=tn ≡ q̇|t′=tn ,

T (pn+1) + V (qn)→ T (p|t′=tn) + V (q|t′=tn) ≡ H(x|t′=tn) (138)

i.e. the classical Hamiltonian. Then,

lim
N→∞

∫ N−1∏
n=1

dqn

N∏
n=1

dpn
2π~

(...)|qN=qf ,q0=qi ≡
∫
Dx(...)|q(t)=qf ,q(0)=qi (139)

defines the path integral measure. Finally, one gets for the propagator

〈qf |e−
i
~ Ĥt|qi〉 =

∫
Dx exp

[
i

~

∫ t

0

dt′(pq̇ −H(p, q))

]
|q(t)=qf ,q(0)=qi (140)

which is the Hamiltonian formulation of the path integral.
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In the specific case of free dynamics, T̂ = p̂2

2m , we can explicitly perform the (functional) Gaussian
integral over momentum and obtain

〈qf |e−
i
~ Ĥt|qi〉 =

∫
Dx e− i

~
∫ t
0
dt′V (q) × e− i

~
∫ t
0
dt′( p

2

2m−pq̇)|q(t)=qf ,q(0)=qi (141)

=

∫
Dq exp

[
i

~

∫ t

0

dt′L(q, q̇)

]
|q(t)=qf ,q(0)=qi =

∫
Dq exp

[
i

~
S[q, q̇]

]
|q(t)=qf ,q(0)=qi (142)

with L(q, q̇) = m
2 q̇

2 − V (q) is the classical Lagrangian, S[q, q̇] is the action functional, and

Dq = lim
N→∞

(
Nm

it2π~

)N/2 N−1∏
n=1

dqn (143)

is the functional measure of the remaining integral.

Therefore: a quantum mechanical transition amplitude has been expressed in terms of a path
integral through phase space or coordinate space, weighed by the classical action. This is Dirac’s
‘sum over histories’ idea, pushed by Feynman.

Gaussian functional integration [supplement to PRELIMINARIES on Gaussian inte-
gration] Starting from (17), suppose that the vector v parametrizes the weight of a real scalar
field on the sites of a one-dimensional lattice. In continuum limit: set {vi} becomes a function v(x)
and the matrix Aij becomes an operator kernel or propagator A(x, x′). Natural generalization
of (17): ∫

Dv(x) exp

[
−1

2

∫
dxdx′v(x)A(x, x′)v(x′) +

∫
dxj(x)v(x)

]
= (det

A

2π
)−1/2 exp

[
1

2

∫
dxdx′j(x)A−1(x, x′)j(x′)

]
(144)

where the inverse kernel satisfies∫
dx′A(x, x′)A−1(x′, x′′) = δ(x− x′′) (145)

so A−1(x, x′) is the Green function of the operator A(x, x′).

Equation (18) generalizes to
〈v(x)v(x′)〉 = A−1(x, x′) (146)

and (21) generalizes to

〈v(x1)v(x2)...v(x2n)〉 =
∑

pairings

A−1(xk1 , xk2)...A−1(xk2n−1 , xk2n). (147)

28



From PI to FT 2017 (J-S Caux) 3 THE DIRAC-FEYNMAN PATH INTEGRAL

The path integral for a free particle

For a free particle Ĥ = p̂2

2m , L̂ = m
2

ˆ̇q2, we have

Gfree(qf , qi; t) ≡ 〈qf |e−
i
~
p̂2

2m t|qi〉 = lim
N→∞

(
Nm

it2π~

)N/2 ∫ N−1∏
n=1

dqne
i
~
∫ t
0
dt′m2 ( dq

dt′ )
2

. (148)

We choose q0 = qi and qN = qf , with t = N∆t. The action can be written

m

2

∫ t

0

dt′(
dq

dt′
)2 =

m

2
∆t

N∑
n=1

(
qn − qn−1

∆t
)2 =

m

2∆t

N∑
n=1

(qn − qn−1)2. (149)

Look at the integral for q1:∫ ∞
−∞

dq1e
im

2~∆t ((q2−q1)2+(q1−q0)2) =

∫ ∞
−∞

dq1e
im

2~∆t (2q2
1−2q1(q0+q2)+q2

2+q2
0)

=

∫ ∞
−∞

dq1e
im

2~∆t∗2((q1− q0+q2
2 )2−(

q0+q2
2 )2+

q22+q20
2 ) = I(−2im

~∆t
)e

im
2~∆t

(q2−q0)2

2

=

(
2πi~∆t

2m

)1/2

e
im

2~∆t
(q2−q0)2

2 (150)

Now look at the integral for q2:∫ ∞
−∞

dq2e
im

2~∆t ((q3−q2)2+ 1
2 (q2−q0)2) =

∫ ∞
−∞

dq2e
im

2~∆t ( 3
2 q

2
2−q2(2q3+q0)+q2

3+
q20
2 )

=

∫ ∞
−∞

dq2e
im

2~∆t ( 3
2 (q2− 2q3+q0

3 )2− 3
2 (

2q3+q0
3 )2+q2

3+
q20
2 )

=

(
2π~i∆t
m

∗ 2

3

)1/2

e
im

2~∆t (− 2
3 (q3+q0/2)2+q2

3+
q20
2 ). (151)

But we have − 2
3 (q3 + q0/2)2 + q2

3 +
q2
0

2 = (q3−q0)2

3 so after the q2 integral, we have(
2π~i∆t
m

∗ 1

2

)1/2(
2π~i∆t
m

∗ 2

3

)1/2

e
im

2~∆t
(q3−q0)2

3 . (152)

Carrying on with the q3, ..., qN−1 integrals then gives(
2π~i∆t
m

)N−1
2

∗
(

1

N

)1/2

e
im

2~∆t

(qN−q0)2

N . (153)

By using t = N∆t and qf = qN , qi = q0, we thus finally get

Gfree(qf , qi; t) =
( m

2π~it

)1/2

e
im
2~t (qf−qi)2

. (154)
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The path integral for a free particle: alternative derivation using matrix
Gaussian integration

The action can be written using

N∑
n=1

(qn − qn−1)2 = q2
0 + q2

N + qTMN−1q − 2JT · q (155)

where we have defined the N − 1-dimensional vectors

qT ≡
(
q1 ... qN−1

)
, JT ≡

(
q0 0 ... 0 qN

)
, (156)

and the matrix (the supindex giving its dimension)

M (N-1) =


2 −1 0 ... 0
−1 2 −1 0 ...
0 −1 2 −1 ...
... 0 −1 ... −1
0 ... ... −1 2

 . (157)

We can calculate the determinant of M easily by for example putting all elements below the
diagonal to zero, adding 1/2 times row 1 to row 2, etc.:

DetM = Det

 2 −1 0 ... ...
0 2− 1

2 −1 0 ...
0 −1 2 −1 ...

 = Det

 d1 −1 0 ...
0 d2 −1 ...
0 0 d3 ...

 (158)

where

d1 ≡ 2, dn+1 = 2− 1

dn
⇒ dn =

n+ 1

n
, (159)

and thus
DetMN−1 = N. (160)

The free propagator can be written as

Gfree(qf , qi; t) = lim
N→∞

(
Nm

it2π~

)N/2
e
im

2~∆t (q2
0+q2

N )

∫ [N−1∏
n=1

dqn

]
e−

1
2q
TAq+jT ·q (161)

where
A ≡ m

i~∆t
M , j ≡ m

i~∆t
J . (162)

The multivariable Gaussian integration can be performed using rule (17), yielding

(2π)
N−1

2 Det A−1/2e
1
2 j
TA−1j. (163)

In view of the structure of J , the only inverse matrix elements we need are

(M (N-1))−1
1,1 = (M (N-1))−1

N−1,N−1 =
DetM (N-2)

DetM (N-1)
=
N − 1

N
,

(M (N-1))−1
1,N−1 = (M (N-1))−1

N−1,1 =
1

DetM (N-1)
=

1

N
, (164)

and thus

JTM−1J =
N − 1

N
(q2

0 + qN )2 +
2

N
q0qN = q2

0 + q2
N −

1

N
(qN − q0)2. (165)

Collecting all factors then gives back the previous answer,

Gfree(qf , qi; t) =
( m

2π~it

)1/2

e
im
2~t (qf−qi)2

. (166)
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3.1 Correspondence between classical and quantum propagators

There is one striking aspect which can be noticed upon careful comparison of the quantum free
particle probability amplitude for propagation (154),

Gfree(qf , qi; t) =
( m

2π~it

)1/2

e
im
2~t (qf−qi)2

(167)

with the classical one (46) (specialized to one dimension), using τ to denote the ‘classical’ time
interval

p(rf , τ |ri, 0) =
1

[4πDτ ]
1/2

exp

[
− (rf − ri)2

4Dτ

]
. (168)

Explicitly, these expressions coincide under the identification

τ = it×
(

~
2Dm

)
. (169)

The factor in parentheses is simply a scale for our clocks. More importantly, what should be
noticed here is that there is a correspondence between quantum propagation in real(respectively:
imaginary) time and classical propagation in imaginary(respectively: real) time. This could have
been anticipated immediately from the starting point, by comparing the diffusion equation (49)

∂

∂τ
p(rf , τ |ri, 0) = D∇2

fp(rf , τ |ri, 0)

with the Schrödinger equation for the free particle,

i~
∂

∂t
U(qf , t; qi, 0) =

−~2

2m
∇2
fU(qf , t; qi, 0).

This correspondence will also manifest itself at the level of general field theory, which will
be treated in the following chapters. The mnemonic trick is that when going from classical to
quantum, one should take τ → it.
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3.2 An integral approximation method

One of the great aspects of the path integral formulation of a problem is that it is readily adaptable
to approximation schemes.

To illustrate the idea, we begin with a very simple case. Consider a function f(x) and the
integral

I[f ] =

∫ ∞
−∞

dxe−f(x). (170)

Knowing some features of the function f , what can we say about the functional I[f ]? Suppose
that f(x) has a global minimum at x0. The integrand will be largest in the region where f has
this minimum. Expanding f , we get

I[f ] =

∫ ∞
−∞

dxe−f(x0)− a2 (x−x0)2+O((x−x0)3) = e−f(x0)Ga(1 + ...) (171)

in which a ≡ d2

dx2 f |x0
(since x0 represents a minimum, we assume a > 0), Ga ≡

∫∞
−∞ dxe−

a
2 x

2

=√
2π
a is the Gaussian integral and ... represent corrections (which can be systematically computed

in terms of fundamental integrals of the form Ga,n ≡
∫∞
−∞ dxxne−

a
2 x

2

). Note that the integral
limits can be adapted here: to a certain degree of accuracy, provided the minimum point x0 sits
in the bulk of the original integration interval and that f(x) becomes sufficiently large away from
x0, the boundaries can be put to ±∞. Note that the steeper the minimum of f(x) is, the more
accurate the approximation is. Note also that if f has multiple minima, then one can simply sum
over the Gaussian-like integrals over each of these minima to approximate the full integral.

As an example, we can consider the integral representation of the Gamma function

Γ(z + 1) =

∫ ∞
0

dxxze−x. (172)

Following our procedure gives

Γ(z + 1) =

∫ ∞
0

dxe−x+z ln x, f(x) = x− z lnx, x0 = z, f(x0) = z(1− ln z),

a = d2
xf(x)|x0

= z/x2|x0
= 1/z,

√
2π/a =

√
2πz. (173)

We thus directly obtain Stirling’s approximation,

Γ(z + 1) =
√

2πzez(ln z−1)(1 + ...). (174)

This approximation method is also valid when dealing with a complex-valued argument in the
integrand’s exponential. It is generally known as the stationary phase approximation.
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3.3 Stationary phase approximation of path integrals

Let us now adapt this idea to path integrals. Consider the functional integral
∫
Dxe−F [x] where

Dx = limN→∞
∏N
n=1 dxn. As before, we are integrating over a set of fixed time-slice coordinates

becoming a smooth function of time in the limit N →∞, {xn} → x(t) with t playing the role of
the former index n. The functional F [x] depends on x(t) at any t.

Evaluating this functional integral in the stationary phase approximation consists is perform-
ing the following steps:

1. Find the points of stationary phase, i.e. configurations x̄(t) such that the functional derivative
of the action vanishes,

DxF = 0⇔ δF [x]

δx(t)
= 0 ∀t. (175)

2. Perform a (functional) Taylor expansion of F to second order around x̄:

F [x] = F [x̄+ y] = F [x̄] +
1

2

∫
dtdt′y(t′)A(t, t′)y(t) + ... (176)

where A(t, t′) = δ2F [x]
δx(t)δx(t′) |x=x̄. The first-order term is zero because of the stationarity condition.

3. Check that kernel Â ≡ {A(t, t′)} is positive definite (thereby guaranteeing the convergence
of the Gaussian approximation to the functional integral). If so, perform the functional integral

over y, yielding
∫
Dxe−F [x] ' e−F [x̄] det

(
Â
2π

)−1/2

(see eq. (144)).

4. Finally, if there are many stationary phase configurations x̄i(t), simply sum over the indi-
vidual contributions: ∫

Dxe−F [x] '
∑
i

e−F [x̄i] det

(
Âi
2π

)−1/2

. (177)

To summarize, the stationary phase approximation is based on finding the dominant terms con-
tributing to the functional integral, including the maximal points and their Gaussian approxima-
tion.

Let us now apply the stationary phase approximation to the Lagrangian form of the Feynman
path integral for a single particle. In particular, this converges quickly in the semiclassical limit
when we take ~→ 0. The dominant trajectory is the solution to the classical equations of motion,
q̄(t) = qcl(t). Defining deviations as r(t) = q(t)− qcl(t) (assuming that there is only one classical
path) then leads to

〈qf |e−
i
~ Ĥt|qi〉 ' e

i
~S[qcl]

∫
r(0)=r(t)=0

Dr exp

[
i

2~

∫ t

0

dt′dt′′r(t′)
δ2S[q]

δq(t′)δq(t′′)
|q=qclr(t′′)

]
(178)

which is the Gaussian approximation to the path integral.

For free Lagrangians L(q, q̇) = m
2 q̇

2 − V (q), the second functional derivative integral term is
computed most easily by Taylor expanding the action:

S[q] =

∫
dtL(q, q̇) =

∫
dt
(m

2
q̇2 − V (q)

)
=

∫
dt

(
m

2
(q̇2
cl + 2q̇clṙ + ṙ2)− V (qcl)− V ′(qcl)r −

1

2
V ′′(qcl)r

2

)
+ ...

= S[qcl] +

∫
dt

(
−mq̈clr − V ′(qcl)r −

m

2
r̈r − 1

2
V ′′(qcl)r

2

)
+ ...

= S[qcl]−
1

2

∫
dt r(t)[m∂2

t + V ′′(qcl(t))]r(t) + ... (179)
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with V ′′(qcl(t)) ≡ ∂2
qV (q)|qcl(t), so

1

2

∫ t

0

dt′dt′′r(t′)
δ2S[q]

δq(t′)δq(t′′)
|q=qclr(t′′) = −1

2

∫ t

0

dt′r(t′)[m∂2
t′ + V ′′(qcl(t

′))]r(t′). (180)

Doing the Gaussian integration finally yields the approximation

〈qf |e−
i
~ Ĥt|qi〉 ' e

i
~S[qcl]

∫
r(0)=r(t)=0

Dr exp

[
− i

2~

∫
dt′r(t′)[m∂2

t′ + V ′′(qcl(t
′))]r(t′)

]
= e

i
~S[qcl] det

(
i

2π~
[m∂2

t + V ′′(qcl(t))]

)−1/2

. (181)

34



From PI to FT 2017 (J-S Caux) 3 THE DIRAC-FEYNMAN PATH INTEGRAL

The path integral for the harmonic oscillator

Let us consider a particle in a harmonic potential, whose Hamiltonian and Lagrangian are respec-
tively

Ĥ =
p̂2

2m
+
mω2

2
x̂2, L̂ =

m

2
ẋ2 − mω2

2
x̂2. (182)

The propagator is then

Gho(qf , qi; t) = 〈qf |e−
i
~ Ĥt|qi〉 =

∫
Dq e i~Sho[q]

∣∣∣
q(t)=qf ,q(0)=qi

(183)

where

Sho[q] =

∫ t

0

dt′L(q, q̇) =
m

2

∫ t

0

dt′
(
q̇2 − ω2q2

)
. (184)

The classical path is determined as

qcl(t
′) = qi cosωt′ −

( qf
sinωt′

− qi cotωt′
)

(185)

so the classical action takes the value

Sho[qcl] =
mω

2 sinωt

(
(q2
f + q2

i ) cosωt− 2qfqi
)
. (186)

The path integral itself can be calculated most easily using our expression (181), which is exact
since our Hamiltonian is quadratic (V ′′ = mω2). The deviations from the classical path can be
expanded in Fourier modes

r(t′) =

∞∑
n=1

rn sin
nπt′

t
, (187)

so we have ∫
dt′r(t′)

[
m∂2

t′ + V ′′
]
r(t′) =

mt

2

∞∑
n=1

r2
n

[
ω2 − n2π2

t2

]
. (188)

The path integral over r(t′) then corresponds over a product of integrals over the rn. To avoid
dealing with the details of this transformation (Jacobian, etc), the easiest is to consider the ratio
with the free propagator (so with ω = 0) which we have already calculated:

∏
n

∫
drne

− imt4~

[
ω2−n2

π2 t
2
]

∏
n

∫
drne

− imt4~

[
−n2

π2 t
2
] =

∞∏
n=1

[
1− ω2t2

n2π2

]−1/2

=

[
sinωt

ωt

]−1/2

. (189)

Using the explicit expression for our free propagator, we thus obtain the exact propagator for the
quantum harmonic oscillator:

Gho(qf , qi; t) =
( mω

2πi~ sinωt

)1/2

e
imω

2~ sinωt ((q2
f+q2

i ) cosωt−2qiqf). (190)
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4 Rudiments of field theory: from Ising to φ4

We have up to now familiarized ourselves with the idea of path integrals, in the contexts of
Brownian motion and single-particle quantum mechanics. We have also encountered a many-
body (classical) model, namely the Ising model, which we managed to exactly solve using a
high-temperature diagrammatic expansion.

This final section will bring many of these concepts together and lead you to your first genuine
field theory. We will learn some new very useful tricks along the way.

4.1 Again the Ising model...

Let us go back a couple of chapters and consider our (temporarily) favourite model once more,
but this time on a square lattice in d dimensions. Our notations are slightly different here, for
convenience. On each lattice site lives an Ising spin Sa, which is a classical spin variable taking
only two possible values, Sa = ±1. The vector a labels the lattice sites. The Ising model is
defined by the classical Hamiltonian

HI = −
∑
a,b

JabSaSb −
∑
a

HaSa,

where Ha is a magnetic field (which can vary from one position to another, hence the index), and
the interaction coefficients Jab ≡ J(|a− b|) fall off quickly with distance.

The classical partition function of the Ising model can be written as the sum over all possible
Ising spin configurations,

ZI =
∑
{Sa}

e−βHI ≡
∑
{Sa}

e
∑

a,b SaKabSb+
∑

a haSa .

where we have defined Kab ≡ βJab and ha ≡ βHa.
Let’s consider the noninteracting problem first: we thus temporarily set Kab = 0 everywhere.

Using the simple identity
∑
Sa
ehaSa = 2 coshha, the classical partition function becomes

ZI |Kab=0 =
∏
a

2 coshha.

What makes solving this exactly difficult8 is the presence of the interaction term. The annoying
thing is that the spin variables take discrete values, and the exponential of their product isn’t
simple to sum up over all configurations.

4.2 On Hubbard and Stratonovich

One of the most important tools of field theory is a rather simple trick allowing to find equivalent
representations to a given theory. Here, our difficulty is that we don’t really like summing over
discrete values of spin variables (the partition function becomes a thermodynamically large poly-
nomial). What we like are Gaussian integrals, which we can more or less always handle. Can we
thus, using some magic, transform our Ising theory into Gaussian-like integrals?

This is the point at which we can introduce the so-called Hubbard-Stratonovich transformation.
The idea is as follows. We begin with a representation of the unit matrix as a field integral over
an auxiliary (real, bosonic) field ψ,

1 ≡ N
∫
Dψe− 1

4

∑
ab ψa(K−1)abψb , Dψ ≡

∏
a

dψa

8We have already seen that the solution to the d = 1 Ising theory (in any field ha = h) is straightforward;
in d = 2, Onsager offered the solution at zero field using a fermionic representation, but we derived it using a
high-temperature expansion; the d = 3 case remains one of the most famous outstanding problems of classical
statistical physics.
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with K−1 the matrix inverse of K. According to our rules for Gaussian integration, the normal-
ization is easily found to be

N = [det (4πK)]
−1/2

. (191)

For each lattice site a, we thus have some ‘dummy’ integration variable ψa. What use is that?
Here is the trick. Consider this representation of unity, but with a shifted value of these dummy
variables. This form is also valid:

1 ≡ N
∫
Dψe− 1

4

∑
ab(ψa+θa)(K−1)ab(ψb+θb), Dψ ≡

∏
a

dψa

in which θa are constants which can be put to whatever value we wish (the integration measure
doesn’t change under such shifts by constants). Written out explicitly,

1 ≡ N
∫
Dψe− 1

4

∑
ab ψa(K−1)abψb− 1

2

∑
ab θa(K−1)abψb− 1

4

∑
ab θa(K−1)abθb

= e−
1
4

∑
ab θa(K−1)abθb ×N

∫
Dψe− 1

4

∑
ab ψa(K−1)abψb− 1

2

∑
ab θa(K−1)abψb

You can now see that by choosing θa = −2
∑

bKabSb, we obtain the equality

e
∑

ab SaKabSb = N
∫
Dψe− 1

4

∑
ab ψa(K−1)abψb+

∑
a Saψa .

It is worth pondering this equation somewhat. On the left-hand side, we have a partition function
weight for spins interacting with each other. On the right-hand side, we have a functional integral
over an additional object ψ which takes values at all lattice sites (since it’s defined throughout
our space, we call it a field); the spins are coupled to this field, and this field has self-couplings
(given by the inverse matrix of the spin self-coupling matrix on the left-hand side) representing
what can be interpreted as its elastic energy.

One can thus view a system of spins interacting with each other, as a system of spins interacting
with an auxiliary field, this field having its own self-interactions. This is exact, in no way is it an
approximation. These two viewpoints are completely equivalent.

Using this last identity, you can now see that the partition function of the interacting Ising
theory can be written

ZI = N
∫
Dψ

∑
{Sa}

e−
1
4

∑
ab ψa(K−1)abψb+

∑
a(ψa+ha)Sa

and thus the Ising model can be viewed as a model of spins coupled to a field, this field having
elastic energy.

The next step is even more entertaining. Since the spins now enter linearly in the effective
action, we can simply sum over all possible spin configurations (

∑
{Sa}). After a redefinition of

the field ψ → φ according to

φa ≡
1

2

∑
b

(K−1)ab(ψb + hb) (192)

(this leads to a redefinition of the constant N → Ñ which we won’t care about here), we get to the
representation of the Ising model’s partition function as a classical functional field integral

ZI = Ñ
∫
Dφe−S[φ], (193)

with effective action

S[φ] ≡
∑
ab

φaKabφb −
∑
a

φaha −
∑
a

ln cosh(2
∑
b

Kabφb). (194)

I remind you that we have not made any approximation whatsoever to reach this point. The
question becomes whether we can go much further. The last term should quickly temper your
enthusiasm. Logarithms are generally hard to handle, and the case here is no exception.
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4.3 Gradient expansion

We now make a low-temperature approximation, by assuming that the fluctuations of φ are small
(for our purposes here, this translates into taking |φa| � 1). We first define the Fourier repre-
sentations (N is the total number of Ising spins in the system, and we assume periodic boundary
conditions in all directions for simplicity) of the field and interaction as

φa =
1√
N

∑
k

e−ik·aφk, Kab =
1

N

∑
k

e−ik·(a−b)Kk. (195)

We then assume that the interaction is mostly local in space, so that we can use a small-momentum
expansion (also called the gradient expansion) of the interaction,

Kk = K0 +
1

2
k · k K

′′

0 + O(|k|4). (196)

The nastily nonlinear function we have to deal with in the action can be expanded as

ln coshx =
1

2
x2 − 1

12
x4 + ... (197)

Explicitly, we can write

xa = 2
∑
b

Kabφb =
2

N3/2

∑
k,k′

∑
b

e−ik·(a−b)−ik′·bKkφk′ =
2√
N

∑
k

e−ik·aKkφk. (198)

Similarly, ∑
a

x2
a

2
=

2

N

∑
k1,k2

Kk1Kk2φk1φk2

∑
a

e−i(k1+k2)·a = 2
∑
k

KkK−kφkφ−k (199)

and ∑
a

x4
a

12
=

4

3N2

∑
k1...k4

Kk1
Kk2

Kk3
Kk4

φk1
φk2

φk3
φk4

∑
a

e−i(k1+k2+k3+k4)·a (200)

Doing the gradient expansion in each of these, and keeping only leading terms,∑
a

x2
a

2
' 2

∑
k

(K0 +
1

2
|k|2K

′′

0 + ...)2φkφ−k (201)

∑
a

x4
a

12
=

4K4
0

3N

∑
k1...k4

φk1φk2φk3φk4δk1+k2+k3+k4,0 (202)

Putting things together, we get that the action has the form

S[φ] =
∑
k

[φk(c1 + c2k · k)φ−k + c3φkh−k] +
c4
N

∑
k1,k2,k3,k4

φk1φk2φk3φk4δk1+k2+k3+k4,0 + ...

(203)
with coefficients

c1 = K0 − 2K2
0 , c2 =

1

2
K
′′

0 − 2K0K
′′

0 , c3 = −1, c4 =
4

3
K4

0 . (204)

Upon Fourier transforming back to real space (specializing to h = 0), the action becomes

S[φ] =

∫
ddx

[
c2(∂φ)2 + c1φ

2 + c4φ
4
]
. (205)

38



From PI to FT 2017 (J-S Caux) 4 RUDIMENTS OF FIELD THEORY: FROM ISING TO φ4

A simple rescaling φ→ 1√
2c2
φ then gives the so-called φ4 theory,

Z =

∫
Dφe−S[φ], S[φ] =

∫
ddx

[
1

2
(∂φ)2 +

r

2
φ2 + gφ4

]
, (206)

with r = c1
c2

and g = c4
4c22

. The calculation of course only makes sense if c2 > 0. Since we expect

that K ′′0 < 0, this means K0 > 1/4.
For your information, the Ising model has a transition when r changes sign from positive values

to negative ones, i.e. when the potential becomes a ‘Mexican hat’ like potential. We can see that r
changes sign when c1 = 0 so K0 = 1/2 and thus the critical temperature is given by the condition
βc = 1

2J0
. For β > βc, r < 0 and the system is in the ordered phase. For β < βc, r > 0 and the

system is in the disordered phase.
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